1ML	DE	HRADUN INSTITUT	TE OF TECHNOLOGY]	LABORATORY MANUAL		
	PRACTICAL INSTRUCTION SHEET						
	EXPERIMENT TITLE: To verify Thevenin's Theorem for DC circuit.						
UNIVERSITY	EXPERIMENT NO.:		ISSUE NO. :		ISSUE DATE :		
	REV. NO. V		REV. DATE: 01/01/2016	PA	PAGE /		
DEPTT.: Electrical Engineering		LABORATORY :Intro to Electrical & Electronics Lab EA1210			SEMESTER: I / II		

Objective: - To verify Thevenin's theorem for dc circuit.

Apparatus Used: - Network kit, Bread board, resistances & connecting wires.

Theory: -

"Any linear two terminal network can be replaced by an equivalent network consisting of a voltage source (V_{Th}) in series with a resistance (R_{Th}) .

Where, $V_{Th} = Open$ circuit voltage at load terminals.

 R_{Th} = Equivalent resistance at load terminal when sources are made inoperative.

Observation Table: -

S.N.	I _L (mA)	V _L (V)	$R_{L} = \frac{V_{L}}{I_{L}}$ (Ω)	V (V)	I (mA)	$R_{\text{Th}} = \frac{V}{I}$ (Ω)	V _{TH} (V)	$I_{L}' = \frac{V_{Th}}{R_{TH} + R_{L}}$ (mA)	$ \%Error = \frac{I_L - I_L}{I_L} *100 $

Circuit Diagram: -

(A) For load current (I_L) and Load Resistance (R_L)

PREPEARD BY:- Mr. Nafees Ahmed

APPROVED BY: - Dr. Gagan Singh

Visit us at www.eedofdit.weebly.com

(C) For R_{Th}

(D) For I_L '

Result: - Thevenin's theorem is verified with some permissible error which is allowed in practical.

Precaution: -

- 1. Check all the resistances and connecting wires are properly connected.
- 2. Terminals of voltage source of the kit should not be short circuited only circuit on the board should be short circuited.
- 3. Current in the ammeter is in mille amperes not in amperes while voltage is in volts.
- 4. Check the connecting lead if voltage or current is not displayed on respective meters.
- 5. The current and voltage given to ammeter & voltmeter respectively should not exceed beyond their maximum range.

PREPEARD BY :-	Mr. Nafees Ahmed		APPROVED BY :- Dr. Gagan Singh			
Visit us at www.eedofdit.weebly.com						