Subject Code	EE303	Subject Title	POWEI		5								
LTP	302	Credit	4	Subject Category	Univ. Core	Year	3rd	Semester	VI				
bjective	s of the Cou	rse	·	·	·			· · · · · ·					
• То	introduce th	ne basic con	cepts of p	power electron	ics,								
• To	introduce ty	pes of conv	erters, th	eir characteris	tics, turn-on of S	SCR, gate	charac	teristics,					
• To	know about	AC-DC Con	verters, D	C - DC Convert	ers, AC-AC and	DC-AC Co	onverte	rs.					
Jnit 1	Power ser characteris circuits. Th and IGBTs -	miconducto tics; Chara yristor – Op static chara	r Device cteristics peration V acteristics	es: Power sen and specifica /- I characterist s and principles	niconductor de ations of switcl cics, two transist s of operation	vices th hes, typ or mode	eir syr es of el; Triac	nbols and static power electronic s, GTOs, MOSFETs	8L				
Jnit 2	Power Ser thyristors; DC-DC Con load; Classi	wer Semiconductor Devices (Contd): Protection of devices; Series and parallel operation of ristors; Commutation techniques of thyristor -DC Converters: Principles of step-down and step-up chopper and their operation with R-L d; Classification of choppers											
Jnit 3	Phase Con inductive lo bridge con controlled converters	trolled Con bads, effect verters; Th bridge conv	verters: of freew ree phase verters; E	Single phase H theeling diode; e half wave co ffect of source	nalf wave contr Single phase fu onverters, three impedance; Si	olled ree Illy contr e phase ngle pha	ctifier wordshiften wordshifte	vith resistive and nd half controlled introlled and half three phase dual	8L				
Jnit 4	AC Voltag controller configurati single phas	e Controlle with resist ons and conse, three pl	ers: Prin ive and i mparison) nase to s	ciple of On-O inductive load) Cyclo Conver ingle phase an	ff and phase co s; Three phase ters: Basic princ ad three phase	ontrols; ac volt iple of o to three	Single age co peratio phase	phase ac voltage ntrollers (various n, single phase to cyclo converters,	8L				
Jnit 5	Inverters: S Three phas Harmonics	Single phase bridge inv reduction t	e series re verters: 1 echnique	sonant inverte 200 and 1800 s; Single phase	r; Single phase k mode of opera and three phase	oridge inv tion; Vol e current	verters tage co t source	ntrol of inverters; inverters.	8L				
fext Book	s:												
1.	M.H. Rashi	d, "Power E	lectronic	s: Circuits, Dev	ices & Applicati	ons", Pr	entice I	Hall of India Ltd. 3	rd Edi				
	2004.												

3. Umanand "Power Electronics" Wiley India.

Reference Books

1. P.C. SEn, "Power Electronics", Mc Graw Hill

2. Dragan Maksimović and Robert Warren Erickson, "Fundamentals of Power Electronics", Springer

Outcome of the Course:

- Articulate the basics of power electronic devices
- Express the design and control of rectifiers, inverters.
- Design of power electronic converters in power control applications
- Ability to express characteristics of SCR, BJT, MOSFET and IGBT.
- Ability to express communication methods.
- Ability design AC voltage controller and Cyclo-Converter.
- ٠

List of Experiments

- 1. To study V-I characteristics of SCR and measure latching and holding currents.
- 2. To study UJT trigger circuit for half wave and full wave control.

3. To study single-phase half wave controlled rectified with (i) resistive load (ii) inductive load with and without freewheeling diode.

4. To study single phase (i) fully controlled (ii) half controlled bridge rectifiers with resistive and

DIT University, Dehradun

inductive loads.

- 5. To study three-phase fully/half controlled bridge rectifier with resistive and inductive loads.
- 6. To study single-phase ac voltage regulator with resistive and inductive loads.
- 7. To study single phase cyclo-converter
- 8. To study triggering of (i) IGBT (ii) MOSFET (iii) power transistor
- 9. To study operation of IGBT/MOSFET chopper circuit
- 10. To study MOSFET/IGBT based single-phase series-resonant inverter.
- 11. To study MOSFET/IGBT based single-phase bridge inverter.

Software based experiments (PSPICE/MATLAB)

- 12. To obtain simulation of SCR and GTO thyristor.
- 13. To obtain simulation of Power Transistor and IGBT.

15. To obtain simulation of single phase full wave ac voltage controller and draw load voltage and load current waveforms for inductive load.

Subject Code	EE304	Subject Title	POWER	POWER SYSTEM ANALYSIS					
LTP	302	Credit	4	Subject Category	Univ. Core	Year	3rd	Semester	VI

Objectives of the Course

- To introduce the concepts of Load flow analysis, bus impedance/admittance matrix,
- To introduce load flow problem formulation and solution techniques,
- To introduce fault analysis, steady state and transient stability analysis, load frequency and voltage control and different type of distribution systems.

Introduction: Representation of power system components like synchronous machine, transformer,

- Unit 1 transmission line. One line diagram, Impedance and Reactance diagram, per unit system of calculation, Brief description of power system components like synchronous machine, transformer, busbar, transmission line and isolators.
 - Load Flow Analysis: Bus classifications, Formation of bus admittance matrix by singular
- Unit 2 transformation, Formation of load flow problem, Gauss Siedel and Newton Raphson method of 8L load flow analysis, Approximation of Newton Raphson load flow analysis, Fast decoupled method.
 Fault analysis: Types of fault shunt and series, Calculation of fault current and voltages for
- Unit 3 symmetrical short circuit, Symmetrical components, Sequence impedance, Unsymmetrical short 8L circuits, Open conductor fault, Current limiting reactors
- Unit 4
 Stability Analysis: Introduction to steady state and transient Stability of power systems, Swing equation, Equal area criteria, Solution of swing equation, Methods of improving stability
 8L

 2
 2
 2
 2
 2
 2
 2
 2
 2
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3
 3</
- Distribution System & Substations: Different types of distribution systems, Distribution from one and
 Unit 5 both ends, Ring mains, Unbalanced loading, 3 phase 4 wire and 3 phase 5 wire distribution system, 8L Layout of distribution substation, Rural electrification and grounding.

Text Books:

1.W.D. Stevenson, "Element of Power System Analysis", McGraw Hill, USA

2.C.L. Wadhwa, "Electrical Power Systems", New Age International Ltd., Third Edition

3.Ashfaq Husain, "Power System", CBS Publishers & Distributors, India

4.B.R. Gupta, "Power System Analysis & Design", S.Chand & Co, Third Edition

5.M.V. Deshpande, " Electrical Power System Design", Tata McGraw Hill

Reference Books

Soni, Gupta & Bhatnagar, "A Course in Electrical Power", Dhanpat Rai & Sons, India
 S.L. Uppal, "Electric Power", Khanna Publishers
 S.N. Singh, "Electric Power Generation, Transmission & Distribution", PHI, New Delhi
 Outcome of the Course:

- Solve load flow problems using per unit values systems.
- Develop power system network models.
- Formulate and solve load flow problems using various techniques as per the requirements of complexity, computational time and accuracy.
- Calculate power losses in power system and develop economical power system operation scheme.

List of Experiments

MATLAB Based

- 1. Computation of Parameters and Modeling of Transmission Lines
- 2. Formation of Bus Admittance and Impedance Matrices
- 3. Solution of load flow and related problems using Gauss- Seidel Method.
- 4. Solution of load flow and related problems using Newton Raphson Method
- 5. Fault Analysis
- 6. Transient and Small Signal Stability Analysis: Single-Machine Infinite Bus System
- 7. Transient Stability Analysis of Multi machine Power Systems
- 8. Electromagnetic Transients in Power Systems

Subject Code	EC352	Subject Title	BIO-MI		IMENTATION				
LTP	302	Credit	4	Subject Category	Electives	Year	3rd	Semester	v
Objectiv	es of the Cou	rse				·			
•	Requiremer	nt of bio-me	dical and	its application					
•	Concept of	bio-potentia	al electro	des and measu	rements relat	ed to then	า.		
•	Concepts of	bio-transd	ucers and	measurement	s related to th	nem.			
•	Concept of	bio-medical	instrume	ents and their u	ises.				
	ANATOMY	AND PHYSI	OLOGY:						
Init 1	Basic Cell F	unctions, (Drigin of	Bio-potentials,	Electrical Ac	tivity of C	ells, cor	nponents of man	1
	Instrument	system, ty	pes of bi	o-medical ster	ns, design fa	ctors and	limitatio	ons of biomedical	
	instrument	s, terms and	d transdu	cers to various	physiological	events.			
	BIO-POTEN	NTIAL ELECT	RODE:					• • • • • •	
	Types of	bio-potent	ial electi	rodes., Electr	ode-Electroly	te interfa	ce, hal	f cell potential,	
nit 2	Polarization	n- polarisab	le and no	on-polarisable	electrodes, A	g/AgCl ele	ctrodes,	, Electrode circuit	
	model; Elec	ctrode and	Skin inter	face and motio	on artifact. Bo	ody surface	e record	ing electrodes for	
	ECG, EMG,	EEG. Electro	odes stan	dards.					
	BIO-IRANS	DUCER:	. Desist	ive Trenduce	na Chuain Cau			wetten colortion	
lnit 2	matorials	on Principie Course facte	es: Resist	ive Transduce	rs Strain Gat	uge- types	, consu Strain (ruction, selection	
init 5	nressure 1	Jauge Tacli	л, briuge Thorm	o resistive t	ransducer I	nductive	Transdu	Jauge type blood	
	Transducer	Diazoalacti	ic Transd	ucer Bio noten	tial Measurer	nont	mansut	icers, capacitive	
	BIOMEDIC			ON CARDIAC N		IT:			
	Cardiovasci	ular Syster	n. Heart	Structure.	Cardiac Cycle	P. FCG T	heory	FCG Electrodes	
	Electrocard	liograph. In	dicator d	ilution metho	ds: Measuren	nent of co	ntinuou	is Cardiac output	
Jnit 4	derived f	rom aorti	c pressi	ure waveforr	ns, cardiac	Arrhythn	nias; F	phonocardiogram,	
	Measureme	ent of hea	rt rate,	Blood pressur	e, Temperat	ure, Respi	ration	rate, Blood Flow	
	meters.		,	·	<i>,</i> ,	<i>,</i> 1		,	
	BIOTELEME	TRY AND E	LECTRICA	L SAFETY:					
	Bio-teleme ⁻	try design,	single cha	annel bio telei	metry transm	itter and r	eceiver	system based on	
JUIC 2	AM, FM a	nd, pulse	modulatio	on. Significand	e of Electric	al Danger	, physic	ological effect of	
	current, gro	ound shock	Hazards.						
ext Boo	ks:								
1	.Joseph J. Car	r & John. N	1. Brown,	'Introduction t	o Biomedical	Equipmen	t techno	ology'	
2	.R.S. Khandpu	ur, 'Handbo	ok of Bior	medical Instrur	nentation', M	cGraw Hill			
eferenc	e Books								
1	.J.G. Webster	r, 'Medical i	nstrumen	itation applicat	ion and desig	n', Hought	on Miff	in Co., Boston USA	۱.
2	.Mohan Mura	ali H, 'Monc	graph on	Biomedical en	gineering', O.	U. Press 19	985.		
Jutcome	e of the Cours	e:							
he cour	se provides a	n understa	nding of:						
٠	Bio-medica	l instrumen	ts and me	easurements.					
•	Principle of	working of	bio-medi	ical transduce	s.				

Skills to use modern bio-medical tools and equipment for measurements related to human body.

List of Experiments

•

- 1. Pulse measurement
- 2. Heartbeat measurement
- 3. Automatic BP measurement
- 4. Heart sound study using electronics stethoscope
- 5. ECG measurement
- Following experiments to be done on the breadboard
- 6. Design of low noise and low frequency amplifier for biomedical application

7. Design of Instrumentation amplifier

8. Construction of chopper amplifier

Two Value Added Experiments to be added by Instructor.

	• J •					3		3	
Subject Code	EE348	Subject Title	ELECTR		E DESIGN				
LTP	302	Credit	4	Subject Category	Electives	Year	3rd	Semester	VI
Objective	s of the Cou	rse		·	·	·			·
• To st	udy and desi	gn the trans	formers a	and analyze th	em				
 To st 	udy and desi	gn the induc	tion mot	ors					
• To st	udy and desi	gn the synch	nronous n	nachines and o	dc machines				
Unit 1	INTRODUC heat dissip forced, rad DESIGN O	TION Standa ation & ten ial & axial), c F TRANSFO	ards & st nperature direct coo RMER O	andardization rise-time cui ling & quantit utput equatio	, Classification ves. Methods y of cooling me on design of	of insula of coolin edium. core, yok	ting ma g venti e and	iterials. Modes lation (induced windings, over	of & 8L all
Unit 2	dimensions	s, Computat	ion of n	o load currer	nt to voltage	regulatior	n, effici	ency and cooli	ng 8L
Unit 3	system des DESIGN OF electric an system. Es synchronou	SYNCHRON SYNCHRON d magnetic timation of us generator	NOUS MA loadings, performa s	ACHINES Outp separation of ance from des	ut equations main dimens sign data. Flow	of synchr ions, Roto w chart fo	onous r or desig or desig	nachines, speci n, Design of fie n of three pha	fic eld se 8L
Unit 4	factors affe size, Rotor from design	ecting size o design of th n data. Flow	f rotating ree phase chart for	e induction m design of thre	paration of m otors. Circle d e phase induc	ain dimen iagram, Es tion moto	ic and r isions, s stimatio rs	nagnetic loading election of fran n of performan	ne 8L ce
Unit 5	Design of a Design of a Philosophy approaches	DC MACHI rmature, cound of comput s analysis-, s	NES & CO mmutator er aided synthesis	DMPUTER AIL r, flow chart fo design, adva and hybrid me	DED DESIGN C or design of dc ntages and lir ethods.	output equ machines mitations.	uation, Compu	Main dimensior Iter aided desi	ns, 8L gn
Text Bool	ks:								
1. A.K. Sav 2. S. K. Se Reference 1. M.G. Sa	whney, "Elec n, "Principles e Books ay, "Alternati	trical Machin s of Electrica ing Current N	ne Design I Machine Machines	", Dhanpat Ra Design with (", Pitman Publ	i & Sons. Computer Prog ishing Compar	grammes" ny Ltd.	, Oxforc	l & IBH Pub. Cor	npany
	yton, ine Pe	en ormance a	anu Desig Taabaala		nies, Pilman I	ublishing	compa	ny Llu.	
3. н. Cott	un, Advance	eu Electrical	rechnolo	gy wheeler F	rubiisning.				
Outcome • Si • Si d	of the Cours tudents will garding rep tudents will esign dimens tudents will	se: be able to resentation be able to sion of core be able to	o learn t using pie formulat and yoke b learn th	he applicatio ce wise linear e the mathen he fundamen	ns of transfo ization and lea natical model tals of electri	rmer and ast square ling of tra ical circui	induct error n ansform ts and	tion motor and nethod. Ier design, outp thermal circuit	d application out equation, ts of cooling
m	ethod.								

• Students will be able to learn the basics of induction motor stator design, electrical and magnetic loading, types and design of winding.

List of Experiments

Design using MATLAB/Simulink/C

- 1. Design of a single phase transformer for distribution
- 2. Design of a three phase distribution transformer
- 3. Design of a three phase power transformer
- 4. Design of a d.c. machine
- 5. Design of a synchronous generator
- 6. Design of a synchronous motor.

Subject Code	EE349	Subject Title	NON-COI	NVENTIONAL	ENERGY RESO	JRCES			
LTP	310	Credit	4	Subject Category	Electives	Year	3rd	Semester	VI

Objectives of the Course

• To introduce fundamentals of various renewable energy source

• The technologies used to harness usable energy from solar, wind, fuel cells

- The technologies used to harness usable energy from ocean geothermal Biomass energy sources.
- Unit 1IntroductionVariousnon-conventionalenergyresources-Introduction,availability,8Lclassification, relative merits and demerits, present energy scenario.Solar Cells Theory of solar cells. Solar cell materials, solar cell power plant, limitations. SolarSolar
- Unit 2Thermal Energy Solar radiation flat plate collectors and their materials, applications and
performance, focusing of collectors and their materials, applications and performance; solar
thermal power plants, thermal energy storage for solar heating and cooling, limitations.
Geothermal Energy Resources of geothermal energy, thermodynamics of geo-thermal energy8L
- Unit 3 conversion-electrical conversion, non-electrical conversion, environmental considerations. Magneto-hydrodynamics (MHD) Principle of working of MHD Power plant, performance and limitations. 8L

Fuel Cells - Principle of working of various types of fuel cells and their working, performance and limitations. Thermo-electrical and thermionic conversions, Principle of working, performance and limitations.

Unit 4 Wind Energy: Wind power and its sources, site selection, criterion, momentum theory, classification of rotors, concentrations and augments, wind characteristics. Performance and limitations of energy conversion systems.

Bio-mass - Availability of bio-mass and its conversion theory.

Ocean Thermal Energy Conversion (OTEC) - Availability, theory and working principle, **Unit 5** performance and limitations.

Wave and Tidal Wave - Principle of working, performance and limitations. Waste Recycling Plants

Text Books:

1.D.S. Chauhan, "Non-Conventional Energy Resources", New Age International

2.B.H. Khan, "Non-Conventional Energy Resources", Tata McGraw Hill

Reference Books

- 1. Andra Gabdel, "A Handbook for Engineers and Economists".
- 2. A. Mani, "Handbook of Solar radiation Data for India".
- 3. Peter Auer, "Advances in Energy System and Technology". Vol. 1 & II Edited by Academic Press.
- 4. F.R. the MITTRE, "Wind Machines" by Energy Resources and Environmental Series.
- 5. Frank Kreith, "Solar Energy Hand Book".
- 6. N. Chermisinogg and Thomes, C. Regin, "Principles and Application of Solar Energy".

7. N.G. Calvert, "Wind Power Principles".

Outcome of the Course:

- Identify renewable energy sources.
- Understand the mechanism of solar, wind and ocean energy sources.
- The understanding of various technologies involved in power generation from renewable energy sources.
- Understand the methods to handle the biomass in a productive way.

8L

Subject Code	EE350	Subject Title	SPECIAL ELECTRICAL MACHINES									
LTP	310	Credit	4	Subject Category	Electives	Year	3rd	Semester	VI			
Objective	s of the Cou	rse										
• To	study regai	rding constru	uction wo	rking and pur	pose of special 3	3 phase a	.c. macł	nines				
• To	o study working and characteristics of servomotors											
• To	Fo study working, construction and applications of special ac and dc motors											
	, -	0,										
Unit 1	Poly-phase phase induc constant to (constant to	AC Machine tion motors rque and co rque and co	es: Constr ; e.m.f. in onstant ponstant ponstant	fuction and p jection in rote bower contro wer), Introdue	erformance of or circuit of slip Is, static slip p ction to multiph	double c ring indu power re ase mach	age and uction r covery nines.	d deep bar three notor, concept of control schemes	8L			
Unit 2	Single phase phase, capa Two Phase applications	se Induction citor start, c AC Servor	Motors: apacitor re notors: C	Construction, un, capacitor onstruction,	, starting charad start, capacitor- torque-speed of	cteristics -run and s character	and ap haded istics, p	plications of split pole motors. performance and	8L			
Unit 3	Stepper Mo	otors: Princi tors, charact	ple of op eristics, d	eration, varia	able reluctance nd applications.	, permar	ient ma	agnet and hybrid	81			

Switched Reluctance Motors: Construction; principle of operation; torque production, modes of operation, drive circuits

Permanent Magnet Machines: Types of permanent magnets and their magnetization characteristics, demagnetizing effect, permanent magnet dc motors, sinusoidal PM ac motors,

- Unit 4 brushless dc motors and their important features and applications, PCB motors. Single phase 8L synchronous motor; construction, operating principle and characteristics of reluctance and hysteresis motors; introduction to permanent magnet generators.
 Single Phase Commutator Motors: Construction, principle of operation, characteristics of
- Unit 5 universal and repulsion motors; Linear Induction Motors. Construction, principle of operation, 8L Linear force, and applications

Text Books:

- 1. P.S. Bimbhra "Generalized Theory of Electrical Machines" Khanna Publishers.
- 2. P.C. Sen "Principles of Electrical Machines and Power Electronics" John willey & Sons, 2001

Reference Books

1. G.K.Dubey "Fundamentals of Electric Drives" Narosa Publishing House, 2001

2. Cyril G. Veinott "Fractional and Sub-fractional horse power electric motors" McGraw Hill International, 1987

3. M.G. Say "Alternating current Machines" , Pitman & Sons

Outcome of the Course:

- Able to distinguish between normal types of motors and special types of motors
- Understand the working of servomotors, stepper motors reluctance motors
- Understand and able to select the suitable motor for the type of load

Subject Code	EE351	Subject Title	INDUSTR	NDUSTRIAL ELECTRICAL SYSTEMS					
LTP	310	Credit	4	Subject Category	Electives	Year	3rd	Semester	VI

Objectives of the Course

- To be able to understand the electrical wiring systems for various applications
- To be able to understand various components of industrial electrical systems.
- To be able to analyze and select the proper size of various electrical system components.

Electrical System Components: LT system wiring components, selection of cables, wires, switches, distribution box, metering system, Tariff structure, protection components- Fuse, MCB, MCCB, o

Unit 1 ELCB, inverse current characteristics, symbols, single line diagram (SLD) of a wiring system, Contactor, Isolator, Relays, MPCB, Electric shock and Electrical safety practices Residential and Commercial Electrical Systems: Types of residential and commercial wiring

systems, general rules and guidelines for installation, load calculation and sizing of wire, rating

Unit 2 of main switch, distribution board and protection devices, earthing system calculations, 8L requirements of commercial installation, deciding lighting scheme and number of lamps, earthing of commercial installation, selection and sizing of components.
 Illumination Systems Understanding various terms regarding light, lumen, intensity, candle

power, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor,
 Unit 3 depreciation factor, various illumination schemes, Incandescent lamps and modern luminaries 8L like CFL, LED and their operation, energy saving in illumination systems, design of a lighting scheme for a residential and commercial premises, flood lighting.
 Industrial Electrical Systems I : HT connection, industrial substation, Transformer selection,

Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning
 Unit 4 Protection, Earthing design, Power factor correction – kVAR calculations, type of 8L compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB and other LT panel components.

Industrial Electrical Systems II: DG Systems, UPS System, Electrical Systems for the elevators, Battery banks, Selection of UPS and Battery Banks.

Unit 5 Industrial Electrical System Automation: Study of basic PLC, advantages of process automation, 8L
 PLC based control system design, Panel Metering and Introduction to SCADA system for distribution automation.

Text Books:

1. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publishers, 2008.

2. K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007.

Reference Books

- 1. S. Singh and R.D. Singh, "Electrical estimating and costing", Dhanpat Rai and Co., 1997.
- 2. Web site for IS Standards.
- 3. H. Joshi, "Residential Commercial and Industrial Systems", McGraw Hill Education, 2008.

Outcome of the Course:

- Understand the electrical wiring systems for residential, commercial and industrial consumers, representing the systems with standard symbols and drawings, SLD.
- Understand various components of industrial electrical systems.
- Analyze and select the proper size of various electrical system components.
- To be able to design an illumination scheme for a given building, workshop etc.

		Oyna				cuivai	Liig		- i i i g	
Subject Code		EE352	Subject Title	DIGITAL	CONTROL SY	STEM				
LTP		302	Credit	4	Subject Category	Electives	Year	3rd	Semester	VI
Objecti	ves of	f the Cour	se							
• To	intro	duce the s	state variabl	e represer	itation of cor	ntinuous and dis	screte da	ita cont	rol systems, stab	ility analysis
an ● Th	a time e .con	e response	e anaiysis us controllabil	ing state m	100el, hservahility	hasic concents	of digi	tal con	trol systems th	eir stahility
ana	alysis,		controllabil	ity and o	bscrvability,	basic concepts			troi systems, th	ch stability
• Us	e of st	ate feedb	ack for pole	placemen	t design, bas	ic concepts and	stability	analysi	s of non linear sy	stems
	C !		sing in Disit		Desis disital					
Unit 1	imp moc Trar	lementati deling of s nsform me	on problem sample-hold ethod.	ai controi ns, basic c l circuit., p	liscrete time ulse transfe	control system, e signals, z-trar r function, solu	advanta sform a tion of c	and inv lifferen	erse z-transform ce equation by z	, 8L
Unit 2	De resp locu	sign of D i oonse spe is plots.	igital Contro cifications,	ol Algorith digital cor	ms Steady son pensator d	tate accuracy, t esign using fre	ransient quency	respon respons	se and frequency e plots and roo	Y t 8L
Unit 3	Stat con diffe feed	e Space version o erence equilated	Analysis a f state vari uations, con	able modentrollability	n: State spa els to transf and observa	ace representa fer functions a ability, design of	tion of nd vice f digital d	digital versa, control	control system solution of state system with state	, 2 2 8L
Unit 4	Stak tran Lyap Lyap	bility of sformation bunov, stopunov's m	Discrete Sy on, Routh s ability theo ethod.	stem: Sta tability cri prems for	bility on th terion on r continuous	e z-plane and th plane. Lyapu and discrete s	Jury sta unov's S systems,	ability tability stabili	criterion, bilinea in the sense o ty analysis usinį	r f g 8L
Unit 5	Opt Dyn	imal digit amic prog	t al control: gramming, D	Discrete ifferent ty	Euler Lagran pes of proble	ge equation, m m and their solu	nax. min utions.	. princi	ple, otpimality &	² 8L
Text Bo	oks:									
	1. B.C	C.Kuo, "Di	gital Contro	l System",	Saunders Col	llege Publishing.				
Poforor	2. IVI.	Gopal, "D	igital Contro	ol and State	e Variable Mi	ethods", Tata M	cGraw H			
Referen		Jeiσh "Δ	nnlied Digit:	al Control"	Prentice Ha	II International				
	2. C.ł	H. Houpis	and G.B.Lan	nont, "Digi	tal Control Sy	stems: Theory,	hardwar	e, Softv	vare", Mc Graw H	lill.
Outcon	ne of t	the Cours	e:							
•	Posse funct	ess in-dep ion.	oth knowled	ge of cond	cepts from c	lassical control	theory,	underst	and the concept	of transfer
•	Find Unde	out the tir erstand th	me response e basic knov	e of a giver vledge of s	system and ervo & servo	design of different	ent basic	contro	ller (P, PI, PID)	
•	Gain	knowledg	e of finding	out system	n stability in t	time and freque	ncy dom	ain.		
•	To dr	aw differe	ent plots of	control sys	tem and com	npensation desig	gn using	these p	lots.	

Subject Code	EE353	Subject Title	POWE	R STATION PR	ACTICE				
LTP	310	Credit	4	Subject Category	Electives	Year	3rd	Semester	VI
Objectives	of the Cou	rse					•		
 The The The cos 	e course ha e course air e course air t.	s been desig ns to provid ns to provid	gned to f e basic f le basic f	ulfill the requir undamentals o undamentals c	ement of pow f economics ir of various tec	er industry volved wit chniques u	y. th powe ised for	r generation optimization of	generatior
Unit 1	Econom peak di utilizatio reserves operatir	ics of Gene versity factor on factor, ba s, load fore ng charges.	eration : or, load ise load a casting,	Types of load curve, load c and peak load s capital cost c	ls, demand f duration curve stations, opera of power plar	factor, gro e, load fa ating and s nts, depre	oup div ctor, ca pinning ciation,	versity factor an apacity factor an annual fixed an	d d 8L d
Unit 2	Tariff c and use Coordin	nd Power F option for of power fa ated Opera	DSM. Ca ctor imp tion of P	provement Ge iuses and effect rovement devi ower Plants Ac	ct of low pow ces. dvantages of	er factor, Coordinat	anteren necessit ed ope	ty of improvemen ration of differen	s, it 8L it
Unit 3	types o various	f power pla types of pov	ants, hyd ver plant	Irothermal sch	eduling: short	term and	iong ter	m. Coordination c	of 8L
Unit 4	Electrica excitatio EHV Sub	al Equipme on systems;	nts in lexciters and out of Elements	Power Plants and automatic IV substation. I	Governors fo voltage regula brief descriptio	or hydro ators (AVR) on of vario	and th), bus ba	ermal generators or arrangements. oments used in	^{3,} 8L
Unit 5	EHV sul substati	ostations, te	esting ar	nd maintenanc	e of EHV sub	stations e	quipme	ents. Gas insulate	d 8L
Text Books	:								
1. B.R. Gu	pta, Gener	ation of Ele	ectrical E	Energy, (Euresi	a Publishing H	House).			
2. M.V. De	shpande, E	lements of E	lectrical	Power Station	Design, (Whe	eler Publis	hing Ho	use).	
Reference	BOOKS	hatation Eng	incoring	and Dractica	(Khanna)				
2. S.N. Sin	gh, Electric	c Power Ge	neration	, Transmission	and Distribu	ition (PHI)			
Outcome o	f the Cours	se:							
• Un	derstandin	g the econo	mics of p	ower generatio	on.				

- Apply design of various new technologies to optimize the economical relations.
- Formulate and solve coordination problem of power system plants.

Subject Code	EE354	Subject Title	DIGIT	AL SIMULATIO	N OF POWER	SYSTEM							
LTP	302	Credit	4	Subject Category	Electives	Year	3rd	Semester	VI				
Objectives	of the Cou	rse											
• The	e objective:	s of the cou	rse are t	to make the st	udent unders	tand the o	peratio	n and control of	a moder				
יסק	wer system	٦,											
• To	introduce v	arious prob	lems end	countered in pr	oper operatio	n of the sy	stem ar	nd their mitigation					
• Stu	dents will l	earn how to	analyze	a large interco	nnected powe	er system t	hrough	digital simulation					
	Network I	Matrices: G	ranh_the	oretic approa	ch for the f	ormation (of notv	vork matrices – V	,				
Unit 1	RUS YRR	and 7100P		building algorit	thms Simulati	ion exampl		Vork matrices – i	8L				
	Short Circi	uit Studies:	Renrese	ntation of 3-nh	nase networks	Short circ	uit stur	lies using 3-nhase					
Unit 2	Z BUS matrix. Fault impedance and admittance matrices for various types of faults. 8L												
	Simulation example.												
	Power Sys	tem Contro	ol: Auto	omatic genera	tion control	(AGC). Vo	oltage	control methods.					
Unit 3	Reactive po	ower compe	nsation,	static VAR syst	ems, FACTS de	evices.	-		8L				
	Optimal Sy	stem Opera	ation: U	nit commitmer	nt. Optimal po	ower flow	solutio	n, Hydro–Thermal					
Unit 4	load schec	luling; short	: range	and long rang	e. Determina	ation of Lo	ss-Forr	nula. Simulation	8L				
	example.												
Unit 5	Computer	Control a	nd Aut	omation: Data	abase for co	ontrol: SC	ADA, S	State estimation.	81				
•	Contingend	cy analysis a	nd powe	r system securi	ty assessment	t. Modern	energy	control centres	01				
Text Books	:												
1.1	ladi Sadat*	: Power Sys	tem Ana	lysis; (McGraw	Hill)								
Reference	Books												
1.	Nagrath an	d Kothari: P	ower Sys	tem Analysis; 4	Ith edition (TN	ИH)							
2.	Grainger ar	nd Stevenso	n: Power	System Analys	is; (McGraw H	Hill)	.						
3.	El-Abiad an	id Stagg: Coi	nputer N	Aethods in Pow	er System An	alysis; (Mc	GrawHi	11)					
4.	wood and	wollenberg	Power (Jeneration Ope	eration and Co	ontrol; Wile	Y, NY						
a .													

- Model the power system for various studies.
- Analyze the system for different short circuit conditions.
- Address the problem of frequency and voltage control under varying load conditions of the system.
- Optimize the generation scheduling in a hydro-thermal mix including the effect of system losses and maintaining the desired operating conditions.
- Analyze large data, in an interconnected power system, obtained through SCADA and utilize them for state estimation, contingency analysis and security assessment.

тіл	University	Debradun
ИП	University,	Denradun

Subject Code	CS214	Subject Title	Operatir	Operating Systems					
LTP	310	Credit	4	Subject Category	DC	Year	2 nd	Semester	IV
		•	•						•

OBJECTIVE:

This course will facilitate the students to learn the different components and various functioning of an operating system.

Unit 1: Introduction to Operating System.

Introduction: Components of a computer System, Operating system: User view & System view, Evolution of operating system, Single Processor & Multiprocessor systems, Real Time System, Distributed Systems, Multimedia Systems, Handheld Systems.

Operating System Structure: Operating System Services, User Operating System Interfaces: Command-Line and GUI, System Calls.

Unit 2: Management & Scheduling

Process Management: Process Concept, Process States, Process Transition Diagram, Process Control Block (PCB). **CPU Scheduling:** Scheduling Concepts, Performance Criteria, Scheduling Queues, Schedulers, Scheduling Algorithms: Preemptive & Non Preemptive: FCFS, SJF, Priority, Round-Robin

Unit 3 Concurrent Processes & Deadlocks

Concurrent Processes: Principle of Concurrency, Producer / Consumer Problem, Co-operating Processes, Race Condition, Critical Section Problem, Peterson's solution, Semaphores, Classical Problem in Concurrency- Dining Philosopher Problem; Inter Process Communication models and Schemes.

Deadlock: System Model, Deadlock Characterization, Prevention, Avoidance and Detection, Recovery from deadlock.

Unit-4 Memory Management

Memory Management: Bare machine, Resident monitor, Multiprogramming with fixed partition, Multiprogramming with variable partition, Multiple base register, Paging, Segmentation, Virtual memory concept, Demand paging, Performance, Paged replaced algorithm, Allocation of frames, Cache memory.

Unit- 5: File Systems & I/O Management

File System: Different types of files and their access methods, various allocation methods. **I/O Management and Disk Scheduling:** I/O Devices, Organization of I/O functions, Disk Structure, Disk Scheduling (FCFS, SSTF, SCAN, C-SCAN, LOOK).

COURSE OUTCOME:

At the end of the course, the student will able to :

CO1. Learn the general architecture& functioning of computers with operating system.

- CO2. Describe, contrast and compare differing structures for operating systems.
- CO3. Understand and analyze theory and implementation of: processes, resource control (concurrency etc.).
- CO4. Understands physical and virtual memory, scheduling, I/O and files

TEXT BOOKS

- 1. Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley,6th Edition 2006.
- 2. D M Dhamdhere, "Operating Systems: A Concept based Approach", PHI. 3rd Edition.2017..

REFERENCES

Harvey M. Dietel, " An Introduction to Operating System", Pearson Education ,1st Edition 2009

(8)

(6)

(7)

(8)

(7)

LTP 302 Credit 4 Subject DC Year 2 nd Semester IV	Subject Code	CS205	Subject Title	Dot Net	Technologie	s				
	LTP	302	Credit	4	Subject Category	DC	Year	2 nd	Semester	IV

OBJECTIVE:

This course aims to provide the knowledge to understand the concepts and elementary use of .NET library such as development of windows application and website creation through ASP.NET. Students are also able to learn about the different validation and use of controls available in Visual Studio.

Unit 1: Introduction to Dot Net

Introduction .NET framework, features of .Net framework, architecture and component of .Net, elements of .Net (CLS.CTS, CLR & BCL). Assembly, type of assemblies, create dll file, how to create and install shared assemblies.

Introduction to C#: C# Language Fundamentals, Namespace, Using Directive, Defining custom namespaces, Default Assignment and variable scope, Basic input and output with the console class, Understanding value types and reference types, Converting between value type and reference type: Boxing and Unboxing, Operators and Expressions, Iterations constructs, control flow constructs, Understanding static methods, Method parameter modifiers, Array manipulation, String manipulation, Enumerations, Defining structures.

Unit 2: Object Oriented Aspects Of C#

Object Oriented Aspects Of C#: Formal definition of the class, Constructor, type of constructor, Destructor, member access modifier(Public, Private, Protected, Internal and Protected Internal), Encapsulation, Polymorphism: Method Overriding and Method Overloading, Override, Virtual, new Keywords, Inheritance: Types of Inheritance and Ineterface ,Abstraction, Sealed Class, Property, Set and get operator ,Indexer, Reflection, **Delegates and Events.**

Unit 3 Exception Handling in C#

Exception, Bug, Error, Exception Handling in .Net, Type of Exception, finally statement, throw and rethrow, difference between System Level Exception and Application Level Exception, Nested try block, Custom Exception, throwing our own exceptions, checked and unchecked operator, handling multiple exception. Garbage collection: Basics, working, finalizing a method, Dispose (), IDisposable Interface, System.GC Type.

Unit-4 Architecture

Three tier architecture, MVC architecture, Entity Framework. Windows Forms: All about windows form, MDI form, creating Windows applications, adding controls to forms, handling Events, and using various Tools

Unit- 5: Database & Web Application

ADO.NET- ODBC, OLEDB, and SQL connected mode, disconnected mode, dataset, data view, data table, data column, data row, data-reader, data adapter.

Web Based Application: Web based application Development On .Net: ASP.NET, Differences between ASP and ASP.NET, understanding post back, understanding page life cycle, State management, Master pages.

COURSE OUTCOME:

On successful completion of this course, student should be able to:

- CO1. To have knowledge of the structure and model of the programming language C #.
- CO2. To Use the programming language C # for various programming technologies.
- CO3. To develop software in C #.
- CO4. To design web applications using ASP.NET..

TEXT BOOKS

- 1. E. Balagurusamy, "Programming in C#", Tata McGraw-Hill, 2nd edition 2004.
- 2. J. Liberty, "Programming C#", O'Reilly, 2nd edition 2002.

(8)

(7)

(8)

(8)

(8)

REFERENCES

- 1. Herbert Schildt, "The Complete Reference: C#", Tata McGraw-Hill, 2nd edition 2004.
- 2. Robinson et al, "Professional C#", 2nd ed., Wrox Press, 2002.
- 3. Andrew Troelsen, "C# and the .NET Platform", A! Press, 1st edition 2003.

SR.NO.	EXPERIMENT NAME
1	Program in C# to demonstrate System.Array class members like Clone(), Copy(), Clear(),Sort() and Reverse().
2	Program in C# to demonstrate System. String members like Contains(),Insert(),Remove(),Replace() and ToUpper().
3	Program in C# Create a Simple Calculator using Text Boxes and Button Tools of Visual Studio which also calculates %, modulus, Root, Clear, Sign Change, and Result
4	Design Login form and create windows form using basic form controls application.
5	Design a form in C# that takes the details of a person (Name, Address and DOB) and enables Radio Button to vote if the age of the person is above 18 and then shows a thanks message.
6	Create a form using Menu Strip Tool and add the following options:-File, Edit, Help. Also add submenu ,for File add :- Open, Close and Exit. For Edit add:- Cut, Copy and Paste. For Help add:-Help and About.
7	Create a windows application which stores an Item (Item_Id, Name,Price,Weight,Type,quantity) in a database. After that there will be a button to view the Detail of Items added. After that create another form from which Item can be removed and Updated.
8	Create a Registration Form with all validations to store the information of a Student in a database. Create Another windows form to assign Elective Subjects to all the students.
9	Create a website for a book store, which sold and give books on rent to customers. Also Store the information of customers
10	Write a Program to demonstrate System.Array class members like Clone(), Copy(), Clear(),Sort() and Reverse().

Subject	CS346	Subject	Introduc	Introduction to Big Data Analytics						
Code		Title	(Departn	(Departmental Elective 3/4)						
LTP	302	Credit	4	Subject Category	DE	Year	3 rd	Semester	VI	

OBJECTIVES: The main goal of this course is to help students learn, understand, and practice big data analytics and machine learning approaches, which include the study of modern computing big data technologies and scaling up machine learning techniques focusing on industry applications. Mainly the course objectives are: conceptualization and summarization of big data and machine learning, trivial data versus big data, big data computing technologies, machine learning techniques, and scaling up machine learning approaches.

Unit 1 Introduction

Examples, data science articulated, history and context, technology landscape.

Unit 2 Data Manipulation at Scale

Databases and the relational algebra ,Parallel databases, parallel query processing, in-database analytics ,MapReduce, Hadoop, relationship to databases, algorithms, extensions, languages ,Key-value stores and NoSQL; tradeoffs of SQL and NoSQL

Unit 3 Analytics

Topics in statistical modeling: basic concepts, experiment design, pitfalls, Topics in machine learning: supervised learning (rules, trees, forests, nearest neighbor, regression), optimization (gradient descent and variants), unsupervised learning.

Unit 4 Communicating Results

Visualization, data products, visual data analytics, Provenance, privacy, ethics, governance.

Unit 5 Special Topics

Graph Analytics: structure, traversals, analytics, PageRank, community detection, recursive queries semantic web.

LEARNING OUTCOMES

The students learning outcomes are designed to specify what the students will be able to perform after completion of the course:

- CO1. Ability to identify the characteristics of datasets and compare the trivial data and big data for various applications.
- CO2. Ability to select and implement machine learning techniques and computing environment that are suitable for the applications under consideration.
- CO3. Ability to solve problems associated with batch learning and online learning, and the big data characteristics such as high dimensionality, dynamically growing data and in particular scalability issues.
- CO4. The student will learn about the graph analytics and its application.

Text Book:

1- Mayer-Schönberger, V., & Cukier, K. *Big Data: A Revolution That Will Transform How We Live, Work, and Think*. Boston: Houghton Miffin Harcourt, 2013.

Reference Book:

1- Frank J. Olhorst Big Data Analytics: Turning Big Data into Big Money (Wiley and SAS Business Series),2015

(9 L)

(6 L)

(8 L)

(7 L)

(7L)

Subject Code	IT346	Subject Title	ADVANC	ED WEB TEC	HNOLOGY				
LTP	302	Credit	3.5	Subject Category	LTP	Year	3rd	Semester	VI

Course Objective:

1. The overall goal of the advanced web technology is to make familiar students with various kind of web as well as android applications.

2. The student will learn how to form attractive web pages using ruby and rail server along with HTML and CSS.

3. The student will also learn how to make portable android applications.

4. The student will get practical experiences of these techniques by the implementation, debugging and testing in Programming language like Ruby, Rail server, Android Studio. (During the Lab).

Detailed Syllabus

<u>UNIT 1</u>

Revised tour of basics: HTML with CSS, sample codes in java script, introduction to XML with CSS, working with images, revision of mysql installation and commands. (4 L)

<u>UNIT 2</u>

Web development and Bootstrap: Introduction to bootstrap, history of bootstrap, responsive website, usage of bootstrap, first webpage with bootstrap Bootstrap controls – buttons, table, images, button groups, dropdown, collapse, tabs, forms etc. (10 L)

<u>UNIT 3</u>

Ruby Introduction: what is ruby?, brief history of ruby, ruby on rails download and installation, first program in ruby, ruby variables and data types- numbers, Boolean, strings etc., puts and print, String functions: length, reverse, upcase, downcase etc., writing comments. (15 L)

<u>UNIT 4</u>

Ruby on rails: introduction to rails, installation of DBMS, writing test application for database connections, starting rails web server and open application, sample website project on rails. (5 L)

<u>UNIT 5</u>

Android Application Development: introduction to android, download and installation of android studio, understand the structure of hello project, design sample app in SDK, configuration and launching of emulator, load application using mobile phone, introduction to sqllite. (6 L)

Learning Outcome

Having successfully completed this course, the student will demonstrate:

- 1. An ability to perform web applications and solve the real world problem.
- 2. Ability to work on live web as well as android project in MNCs.

Text book [TB]:

1. Michael Hartl, Ruby on rails tutorial (rails 5) learn web development with rails, ed 4, online

Reference books [RB]:

- 1. Head First Android Development A Brain-Friendly Guide By Dawn Griffiths, David Griffiths Publisher: O'Reilly Media, 2015.
- 2. Programming Ruby 1.9 & 2.0: The Pragmatic Programmers' Guide (The Facets of Ruby) 4th Edition by Dave Thomas (Author), Andy Hunt (Author), Chad Fowler (Author)

List Of Practical's

SR.NO.	EXPERIMENT NAME
1	Design bordered table for storing details of all employees in IT department using
	bootstrap. Also highlight HOD of department.
2	Insert an image in the webpage in different shapes like circle, rectangle etc.
3	Design login form using bootstrap classes.
4	Design one page web poster of your project using bootstrap.
5	Downloading and installation of ruby on rails.
6	Create a module for simple calculator function.
7	Write a program to calculate factorial of a no using ruby.
8	Write first database application using rails and map the web server.
9	Develop your own website by using bootstrap and rails.
10	Create some basic android applications like: working with button, ToggleButton,
	checkbox, date-time picker, AlertDialog box etc.
11	Create a MediaPlayer application in android using the above concepts.

DIT University, Dehradun

Syllabus of B.Tech – Electrical Engineering

Subject Code	HS304	Subject Title	Apt	itude and Soft Ski	lls IV				
LTP	300	Credit	0	Subject Category	AC	Year	111	Semester	VI

Course Outline: Aptitude and Soft Skills IV is the final step of programme and the module is designed to enhance the analytical and interpersonal skills of students to make them ready to face various placements, interviews. It will also help them learn various personality development techniques by enhancing their GD and PI skills. Mock Placement Drive will test and improve students by Feedback Sharing & Error Correction.

Course Objective:

- 1. Align themselves with the placement requirements and their needs
- 2. Learn analytical and employability skills
- 3. Prepare students for job placements so that they could clear the selection process successfully and give them strategies and skills to crack GD as well as PI to get selected with decent job offers

Course Pre/Co-requisite (if any):

- 1. Understanding grammar, number system and basic arithmetic, analytical reasoning concepts, covered in Aptitude and Soft Skills III
- 2. Professional profile building and Self introduction

Detailed Syllabus

UNIT 1: QUANTITATIVE APTITUDE

Partnership

Introduction & types; Speed, Distance and Time: Average Velocity; Race tracks - Straight and Circular; Trains; Boats and Streams.

Time and Work

Basic concepts (relationship between men, days and work); Understanding group efficiency; Alternate work; Negative work; Wages; Pipes and Cisterns.

Permutation and Combination

Counting (Addition and Multiplication); Arrangements around- Circular, Square and Rectangular tables and in straight lines, circular permutation, selection, distribution.

Probability

Cloze test

Introduction, various types of events; Classical definition of probability; Random and Discrete variables; Bayes' Theorem and question types.

Data Interpretation

Introduction; Different ways of representing data- Narration based, pictorial, pie chart, Bar graph, line charts; various questions based upon them.

UNIT 2: VERBAL APTITUDE

Intricacies of cloze test, correct use of specific adjectives, concept of sentence improvement, writing concept, auxiliaries and modals.

Words Concept of consistency, precision, concision in terms of reading and writing, advance word choice with respect to placement papers, SAP (Subject-Audience-Purpose) approach. Clauses 02 hours

02 hours

02 hours

11 HOURS

02 hours **Basic Principles of**

02 hours

02 hours

03 hours

09 HOURS

02 hours

Subordinate Clauses- The noun clause, the adjective clause, the adverb clause, Analysis of simple and complex sentences, prepositional phrases, transformation of sentences.

Vocabulary

Revisiting vocabulary- high, medium and low frequency words, organization of ideas an thoughts in order to understand the text- The Pyramid Principle.

Questions

Various test taking skills in accordance with the placement papers.

UNIT 3: LOGICAL REASONING	11 HOURS
Deductive Logic	03 hours

Premises and conclusion structure, Quality of deductive argument, Categorical arguments, Syllogism, Conditional Arguments- If..then, only if..then, If and only if, Either or.

Puzzles

Grouping and selection, Double line up, Binary logic- truth teller-lie teller, Team formation and miscellaneous puzzles.

Set Theory and Critical Reasoning-II

Union and Intersection of sets, Use of venn diagrams in problem solving with two, three, four set, concept of maxima-minima through Venn diagram.

Critical reasoning II: Statement and Inference, cause and Effects, Statement and Arguments- Strengthen or Weaken the argument, Statement Assertion and Reason.

Non-Verbal Reasoning

Mirror-image, Water-image, Spotting out the embedded figures, Completion of incomplete pattern, Figure matrix, Paper folding, Paper cutting, Grouping of identical figures, Counting figures, Non verbal series / analogies / odd man out.

Data Sufficiency

Data Sufficiency based on logical reasoning field like Coding-Decoding / Puzzle Test / Blood Relations / Mathematical calculations / clock / calendar / etc.

UNIT 4: SOFT SKILLS	08 HOURS	
Group Discussion		04 hours

Importance, Do's & Don'ts, Personality Traits, Tips and Strategies, Types of Group Discussions. Suggested Exercises, Games & Activities: Mock Group Discussions (on basic topics), with feedback sharing and error analysis.

Personal Interview

Importance, Do's & Don'ts, Personality Interview, Tips and Strategies, Etiquette Rules. Suggested Exercises, Games & Activities: Mock Personal Interviews (contd.) with feedback sharing and error analysis.

Learning Outcomes:

By the end of this semester, students will:

- 1. Be prepared for the upcoming placements and they will also be ready for other competitive exams.
- 2. Improve their GD and PI Skills and be able to have firsthand experience of a Placement drive and gain sufficient confidence to perform well.

Text book [TB]:

02 hours

01 hour

02 hours

04 hours

01 hour

02 hours

03hours

- 1. Quantitative Aptitude : How to prepare for Quantitative Aptitude, Arun Sharma, McGraw Hill, 8th edition, 2018.
- 2. Logical Reasoning : A Modern Approach to Logical Reasoning-R.S. Aggarwal, S Chand Publishing; 2nd Colour edition-2018.
- 3. Verbal Aptitude : English is Easy- Chetanand Singh, BSC Publication-2018.
- 4. Soft Skills : Group Discussion on Current Topics by P. N. Joshi; Upkar Prakashan-2010.

Reference books [RB]:

1. Quantitative Aptitude: Quantitative Aptitude for Competitive Examinations- R.S. Agarwal, S. Chand Publications-2017.

Quantitative Aptitude: Quantitative Aptitude-Saurabh Rawat & Anushree Sah Rawat Savera Publishing House, 1st edition-2016.

 Logical Reasoning: Logical Reasoning and Data Interpretation for the CAT - Nishit K Sinha, Pearson India; 5th edition-2016.

Logical Reasoning: Wiley's Verbal Ability and Reasoning - P A ANAND, Wiley-2016.

- 3. Verbal Aptitude: Oxford Guide to English Grammar- John Eastwood, Oxford University Press-2003. Verbal Aptitude: Fun with grammar- Suzanne W. Woodward Pearson Education ESL-1996.
- 4. Soft Skills: A Complete Kit for Group Discussion by S. Hundiwala; Arihant publications; edition-2018. Soft Skills: Basic Interviewing Skills by Raymond L. Gorden, Waveland Press, Inc.; 1 edition-1998.