# Construction of Lyapunov function

By: Nafees Ahmed

# **Construction of Lyapunov function**

#### Major issues

■ 1. If above to methods i.e.  $V(X) = \frac{1}{2}X^TX$  Or V(X) =

*Kinteic Energy* + *Potential Engery* fails, what should we do now? Is there any standard procedure to find out the Lyapunov fucnion ? Answer to this is yes

 If system is nsdf then there may be issues related to system whether it is stable or asymptotically stable.

#### There are two methods to construct the Lyapunov function

- By Variable Gradient method
- By Krasovskii's Method

• We know 
$$\dot{V}(X) = \left(\frac{\partial V}{\partial x}\right)^T \dot{X} = \left(\frac{\partial V}{\partial x}\right)^T f(X)$$
  
• Instead of selecting  $\dot{V}(X)$  we will  
select  $\Delta V = \frac{\partial V}{\partial x}$  and then find out  
condition for V(X)

\* Select a  $\nabla V = \frac{\partial V}{\partial X} = g(X)$  that contains some adjustable parameters

Then 
$$dV(X) = \left(\frac{\partial V}{\partial X}\right)^{T} dX$$
  

$$\int_{\tilde{X}=0}^{X} dV(\tilde{X}) = \int_{\tilde{X}=0}^{X} \left(\frac{\partial V}{\partial \tilde{X}}\right)^{T} d\tilde{X}$$

$$V(X) - V(0) = \int_{\tilde{X}=0}^{X} g(\tilde{X}) d\tilde{X}$$

$$\frac{Note:}{\text{To recover a unique } V,$$

$$\nabla V = g(X) \text{ must satisfy}$$
the "Curl Condition":  
*i.e.*  $\frac{\partial g_{i}}{\partial x_{j}} = \frac{\partial g_{j}}{\partial x_{i}}$ 

However, note that the intergal value depends on the initial and final states (not on the path followed). Hence, integration can be conveniently done along each of the co-ordinate axes in turn; i.e.

$$Y(X) = \int_{0}^{x_{1}} g_{1}(\tilde{x}_{1}, 0, \dots, 0) d\tilde{x}_{1}$$
  
+ 
$$\int_{0}^{x_{2}} g_{2}(x_{1}, \tilde{x}_{2}, 0, \dots, 0) d\tilde{x}_{2}$$
  
:  
+ 
$$\int_{0}^{x_{n}} g_{n}(x_{1}, \dots, x_{n-1}, \tilde{x}_{n}) d\tilde{x}_{n}$$

<u>Note</u>: The free parameter of g(X) are constrained to satisfy the symmetric condition, which is satisfied by all gradients of a scalar functions.

- Curl Condition means  $\frac{\partial g_1}{\partial x_2} = \frac{\partial g_2}{\partial x_1}$ This will result  $\frac{\partial g}{\partial x}$  matrix as a symmetrical matrix
- integration can be conveniently done along each of the co-ordinate axes means, we can move first along x<sub>1</sub> axis than x<sub>2</sub> axis than x<sub>3</sub> & so on that means we can integrate first w.r.t x<sub>1</sub> than w.r.t. x<sub>2</sub> & so on

<u>Theorem</u>: A function g(X) is the gradient of a scalar function V(X) <u>if and only if</u> the matrix  $\left[\frac{\partial g(X)}{\partial X}\right]$ 

is symmetric; where

$$\begin{bmatrix} \frac{\partial g(X)}{\partial X} \end{bmatrix} \triangleq \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \dots & \frac{\partial g_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial x_1} & \dots & \frac{\partial g_n}{\partial x_n} \end{bmatrix}$$

Proof: Please see Marquez book (Appendix)

Proof : (Necessity) Assume:  $g(X) = \frac{\partial V}{\partial X}$  $\frac{\partial g(X)}{\partial X} = \frac{\partial^2 V}{\partial X^2}$  $= \begin{pmatrix} \frac{\partial^2 V}{\partial x_1^2} & \frac{\partial^2 V}{\partial x_1 \partial x_2} & \dots & \frac{\partial^2 V}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 V}{\partial x_n \partial x_1} & \frac{\partial^2 V}{\partial x_n \partial x_2} & \dots & \frac{\partial^2 V}{\partial x_n^2} \end{pmatrix}$ 





We have:

$$V(X) = \int_{0}^{x_{1}} g(\tilde{x}) d\tilde{x}$$
  
=  $\int_{0}^{x_{1}} g_{1}(\tilde{x}_{1}, 0, ...., 0) d\tilde{x}_{1}$   
+  $\int_{0}^{x_{2}} g_{2}(x_{1}, \tilde{x}_{2}, 0, ...., 0) d\tilde{x}_{2}$   
+  $\int_{0}^{x_{n}} g_{n}(x_{1}, x_{2}, ...., x_{n-1}, \tilde{x}_{n}) d\tilde{x}_{n}$ 

Take partial derivate of V(X) w.r.to x<sub>1</sub>

$$\frac{\partial V}{\partial x_1} = g_1(x_1, 0, \dots, 0)$$

$$+ \int_{0}^{x_{2}} \frac{\partial g_{2}}{\partial x_{1}}(x_{1}, \tilde{x}_{2}, 0, \dots, 0)d\tilde{x}_{2}$$
  
$$+ \int_{0}^{x_{n}} \frac{\partial g_{n}}{\partial x_{1}}(x_{1}, x_{2}, \dots, x_{n-1}, \tilde{x}_{n})d\tilde{x}$$

 $\frac{using}{\frac{\partial g_2}{\partial x_1}} = \frac{\partial g_1}{\partial x_2}$ And so on

$$= g_1(x_1, 0, ..., 0) + \int_0^{x_2} \frac{\partial g_1}{\partial x_2}(x_1, \tilde{x}_2, 0, ..., 0) d\tilde{x}_2 + ... + \int_0^{x_n} \frac{\partial g_1}{\partial x_n}(x_1, x_2, ..., x_{n-1}, \tilde{x}_n) d\tilde{x}_n$$

$$= g_{1}(x_{1}, 0, ...., 0) + g_{1}(x_{1}, \tilde{x}_{2}, 0, ...., 0) \Big|_{\tilde{x}_{2}=0}^{x_{2}} + \dots + g_{1}(x_{1}, x_{2}, ...., x_{n-1}, \tilde{x}_{n}) \Big|_{\tilde{x}_{n}=0}^{x_{n}}$$

$$= g_{1}(x_{1}, 0, ...., 0) + [g_{1}(x_{1}, \tilde{x}_{2}, 0, ...., 0) - g_{1}(x_{1}, 0, ...., 0)] + \dots + [g_{1}(x_{1}, x_{2}, ...., x_{n}) - g_{n}(x_{1}, x_{2}, ...., x_{n}, 0)]$$

$$= g_{1}(x_{1}, x_{2}, ...., x_{n})$$
i.e  $\boxed{\frac{\partial V}{\partial x_{1}}} = g_{1}(X)$ 
Similarly  $\frac{\partial V}{\partial x_{i}} = g_{i}(X)$ ,  $\forall i = 1, \dots, n$ 

# Variable Gradient Method: Example

Problem: Analyze the stability behaviour of the following system

 $\dot{x}_{1} = -ax_{1}$  $\dot{x}_2 = bx_2 + x_1x_2^2$ Solution: X = 0 is an equilibrium point Assume  $\frac{\partial V}{\partial X} = g(X) = \begin{bmatrix} k_1 & k \\ k & k_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ A symmetric matrix Note:  $\frac{\partial g_1}{\partial x} = \frac{\partial g_2}{\partial x} = k$ 

Note: For equilibrium point  

$$\dot{x}_1 = -ax_1 = 0$$
  
 $\dot{x}_2 = bx_2 + x_1x_2^2 = 0$   
 $\Rightarrow x_1 = 0 \& x_2 = 0$   
 $\Rightarrow X = 0$ 

#### Variable Gradient Method: Example

2

Further, let us assume

$$: \qquad \frac{\partial V}{\partial X} = \begin{bmatrix} g_1(X) \\ g_2(X) \end{bmatrix} = \begin{bmatrix} k_1 x_1 \\ k_2 x_2 \end{bmatrix}$$
 Taking k=0  $\Rightarrow$  g(x) will be diagonal symmetrical matrix  

$$= \int_{0}^{x_1} g_1(\tilde{x}_1, 0) d\tilde{x}_1 + \int_{0}^{x_2} g_2(x_1, \tilde{x}_2) d\tilde{x}_2$$

$$= \int_{0}^{x_1} k_1 \tilde{x}_1 d\tilde{x}_1 + \int_{0}^{x_2} k_2 \tilde{x}_2 d\tilde{x}_2$$

$$= \frac{1}{2} (k_1 x_1^2 + k_2 x_2^2)$$

2 )

#### **Variable Gradient Method:**

Choose  $k_1, k_2 > 0$ Then  $V(X) > 0 \quad \forall X \neq 0$  and V(0) = 0V(X) is a Lyapunov function candidate.

$$\dot{V}(X) = g^{T}(X)f(X) = \begin{bmatrix} k_{1}x_{1} & k_{2}x_{2} \end{bmatrix} \begin{bmatrix} -ax_{1} \\ bx_{2} + x_{1}x_{2}^{2} \end{bmatrix}$$
$$= -k_{1}ax_{1}^{2} + k_{2}(b + x_{1}x_{2})x_{2}^{2}$$
Let us choose  $k_{1} = k_{2} = 1$ . Then  
 $\dot{V}(X) = -ax_{1}^{2} + (b + x_{1}x_{2})x_{2}^{2}$ 

## Variable Gradient Method:

Unless we know about a, b at this point nothing can be said about  $\dot{V}(X)$ . Let us assume a > 0, b < 0. Then

$$\dot{V}(X) = -ax_1^2 - (|b| - x_1x_2) x_2^2$$
  
>0 (for small  $x_1x_2$ )

- $\therefore V(X) \le 0$  in some domain  $D \subset \mathbb{R}^2$  and  $0 \in D$
- i.e  $\dot{V}(X)$  is negative definite in D
- .:. The system is locally asymptotically stable!

Explanation



#### **Krasovskii's Method**

Let us consider the system  $\dot{X} = f(X)$ 

Let  $A(X) \triangleq \left[\frac{\partial f}{\partial X}\right]$ : Jacobian matrix

#### Theorem :

If the matrix  $F(X) \triangleq A(X) + A^T(X)$  is <u>ndf</u> for all  $X \in D$   $(0 \in D)$ , then the equilibrium point is <u>locally asymptotically stable</u> and a Lyapunov function for the system is

 $V(X) = f^{T}(X)f(X)$ 

<u>Note</u>: If  $D = \mathbb{R}^n$  and V(X) is radially unbounded,

then the equilibrium point is globally asymptotically stable.

#### **Krasovskii's Method**

$$\begin{split} \dot{V}(X) &= f^T \dot{f} + \dot{f}^T f \\ &= f^T \left[ \frac{\partial f}{\partial X} \right]^T \dot{X} + \dot{X}^T \left[ \frac{\partial f}{\partial X} \right] f \\ &= f^T \left( A^T + A \right) f \\ &= f^T F f \end{split}$$
  
Hence, if  $F(X)$  is negative definite,  $\dot{V}(X)$  is ndf.

So, by Lyapunov's theorem, X = 0 is asymptotically stable.

## **Krasovskii's Method**

<u>Note</u>: The global asymptotic stability of the system is guaranteed by the Global version of Lyapunov's direct method.

<u>**Comment</u>**: While the usage of this result is fairly straight forward, its applicability is limited in practice since F(X) for many systems do not satisfy the negative definite property.</u>

#### **Generalized Krasovskii's Theorem**

Theorem :

Let 
$$A(X) \triangleq \left[\frac{\partial f(X)}{\partial X}\right]$$

A sufficient condition for the origin to be asymptotically stable is that  $\exists$  two pdf matrices P and Q:  $\forall X \neq 0$ , the matrix  $F(X) = A^T P + PA + Q$ 

is negative semi-definite in some neighbourhood D of the origin.

In addition, if  $D = \mathbb{R}^n$  and  $V(X) \triangleq f^T(X) P f(X)$  is radially unbounded, then the system is globally asymptotically stable.

#### Generalized Krasovskii's Theorem

**<u>Proof</u>**:  $V(X) = f^T(X)Pf(X)$  $\dot{V}(X) = \left[ f^T P \dot{f} + \dot{f}^T P f \right]$  $= f^{T} P \left( \frac{\partial f}{\partial X} \right)^{T} \dot{X} + \left[ \left( \frac{\partial f}{\partial X} \right)^{T} \dot{X} \right]^{T} P f$  $= f^{T} P A^{T} f + f^{T} A P f$  $= f^{T} \left( PA^{T} + AP + Q - Q \right) f$  $=\underbrace{f^{T}\left(PA^{T}+AP+Q\right)f}_{ndf}-\underbrace{f^{T}Qf}_{ndf}$ nsdf < 0 (ndf) Hence, the result.

#### Example

<u>Problem</u>: Analyze the stability behaviour of the following system  $\dot{x}_1 = -6x_1 + 2x_2$ 

$$\dot{x}_2 = 2x_1 - 6x_2 - 2x_2^3$$

Solution:

$$A = \begin{bmatrix} \frac{\partial f}{\partial X} \end{bmatrix} = \begin{bmatrix} -6 & 2\\ 2 & -6 - 6{x_2}^2 \end{bmatrix}$$
$$F = A + A^T = \begin{bmatrix} -12 & 4\\ 4 & -12 - 12{x_2}^2 \end{bmatrix}$$

## Example

Eigen values of F:

$$\begin{vmatrix} \lambda + 12 & -4 \\ -4 & \lambda + 12 + 12x_2^2 \end{vmatrix} = 0$$
  
$$(\lambda + 12)^2 + (\lambda + 12)12x_2^2 - 16 = 0$$
  
$$\lambda^2 + 24\lambda + 144 + 12x_2^2\lambda + 144x_2^2 - 16 = 0$$
  
$$\lambda^2 + (24 + 12x_2^2)\lambda + (128 + 144x_2^2) = 0$$
  
$$\lambda_{1,2} = \frac{1}{2} \left[ -(24 + 12x_2^2) \pm \sqrt{(24 + 12x_2^2)^2 - 4(128 + 144x_2^2)} \right]$$

## Example

$$= -(12 + 6x_2^{2}) \pm \sqrt{(12 + 6x_2^{2})^2 - (128 + 144x_2^{2})}$$

$$< 0 \quad \forall x_2 \in \mathbb{R}$$

$$\therefore \quad \text{A is ndf in } \mathbb{R}^2$$
Morever,  $V(X) = f^T(X)f(X)$ 

$$= (-6x_1 + 2x_2)^2 + (2x_1 - 6x_2 - 2x_2^{3})^2$$

$$\rightarrow \infty \quad \text{as} \quad ||X|| \rightarrow \infty$$

$$\therefore \quad X = 0 \quad \text{is globally asymptotically stable.}$$

# Thanks