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Construction of Lyapunoyv function

= Major issues

» ] If above to methodsi.e. V(X) = %XTX OorvV(X) =

Kinteic Energy + Potential Engery fails, what should we do now? Is there
any standard procedure to find out the Lyapunov fucnion ¢ Answer to

this is yes
» D), If system is nsdf then there may be issues related 1o system
whether it is stable or asymptotically stable.

= There are two methods to consiruct the Lyapunov function
» |, By Variable Gradient method

» ) By Krasovskii's Method




Variable Gradient method

»\We know V(X) = (%)TX = (%)Tf(X)

»|nstead of selecting V(X) we will
select AV = Z—Z and then find out
condition for V(X)




Variable Gradient method...

av . .
* Selecta VV = aw =2 (){ ) that contains some adjustable parameters

: 4 g Note:
¥ Then di(x) | | Ak '
X To recover a unique V.
X X : T ,
: ,, [ € : VIV =eo(X) must satis
[fav(®)=[|2X] at &
. - J | AX the "Curl Condition":
=0 X=0
.51." R % ie Egj A E‘g}
V(X)) [ ¢(X)ax A

£=0
However, note that the intergal value depends on the nitial and final
states (not on the path followed). Hence. integration can be conveniently

done along each of the co-ordinate axes in tumn: 1.€.




Variable Gradient method...

x?f
0

Note: The free parameter of g (Y) are constrained to
satisfy the symmetric condition, which is satisfied

by all gradients of a scalar functions.

* Curl Condition means
dg1 09>
d0x, 0xq

This will result Z—i matrix as a

symmetrical matrix

* integratfion can be
conveniently done along
each of the co-ordinate axes
means, we can move first
along x,; axis than x, axis than
X5 & SO on that means we can
integrate first w.r.t x; than
w.r.f. X, & so on




Variable Gradient method...

Theorem: A function g (X) is the gradient of a scalar

. . | . |9g(X)
function V (X) if and only 1f the matrix
oOX

1s symmetric; where

o5, %
i By
dg(X) . o ;
oY T R : : Proof: Please see Marquez book
5 agn 3.8,; (Appendix)

| O, Ox,




Variable Gradient method...

Proof : (Necessity)

AV
Assume: g (X) e
dg(X) dl
L
[ 9%V 8V oV
Ox,” Ox0x, Ox0Ox
oV o’V o’V
| Ox,0x,  Ox,0x, Ox? |




Variable Gradient method...

Hence.the matrix

oV 0%V og.

. . o . . i . =
Ox,0x, Ox,0x, Ox

-c‘?g(X)'
0X

should be symmetric.

vV oV

=Take partial derivative in any

c‘?xi 8)«‘1. @xjaxi sequence




Variable Gradient method...

g,

Sufficiency: Assume —




Variable Gradient method...

We have:
v(x)= [ g(¥)dx Take parfia
0 derivate of V(X)
- w.r.fo x;
= f g,(#.0......0)d5,
0
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Variable Gradient method...

oV
— = o A | R |
o, £ (% )
X5 dg7
-+ ¢ \‘7 0 d\‘)
: [(")xl 1, )
 h g, :
T [ d\l (\1 \7 n—1 \‘n)dxn
X, dg ;
= o (x,.0 0)+ %0
&, ) fd< :
'+ dg, e
+fg-(\’l \2 \n 1 \n)dTN

using
dg9, 091
d0x; 0x,
And so on

. 0)d%, +...



Variable Gradient method...
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will cancel
v out
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Variable Gradient Method:

Examp

=

Problem: Analyze the stability behaviour of the following system

1

— —dX

1

. ) b = .42

Solution: X = 0 1s an equilibrium point

9) 4
ASSHITe: -

0X

E &
kK,

i el
W

A symmetric matnx

:gﬂXﬁ:
Note: a‘gl
ox

A

3z

772 ]

Note: For equilibrium point
561 - —ax1 - O
.7.6'2 = bxz +x1x% == 0

=>x,=0& x,=0
>X=0




Variable Gradient Method:

Example
Further, let us assume
ov g (X) k,x, Taking k=0= g(x) will be
e = diagonal symmetrical
5.5, R o (X) 2 o martrix

= V(X)= [ & (%.0)d% + [ g (x.%)d%,
0

0
l D
= ] k. X, dX, i ] k,X,dx,
0 0

eeeh

- (klsaf p kzxf)




Variable Gradient Method:

Choose k. ,k, >0

Then V(X) =0 == 0 and V(U): 0
V (X ) 1s a Lyapunov function candidate.

—dax;

i) —o XX kX kx|

_bxz -+ xlx;_
= —k,ax. +k, (b + x,x, )x;i
Let us choose &k, =k, =1. Then

V(X) — —ax; +(b+x1x2)x§




Variable Gradient Method:

Unless we know about a, b at this point nothing can be

said about V(X ) Letus assume a >0, 5 <0. Then

V(X)=—ax — (|b‘ — xlxl) X

>0 (for small x;x, )

V'(X){? 0 in some domain D C R” and 0 € D
i.e V(X) is negative definite in D

. The system 1s locally asymptotically stable!




Variable gradient method...

» [Explanation

=There exist a small domain D which include
equilibrium point, where sysis asymptotically stable




Krasovskii’s Method

Let us consider the system X = f (X ]
of

—— | : Jacobian matrix
oxX

e

Let 4(X)

Theorem :

If the matrix F(X)= 4(X)+ 4" (X) is ndf forall YeD (0 D),

then the equilibrium point is locally asymptotically stable and a

Lyapunov function for the system is

7 (x)= 17 (x) £(X)
Note: If D=R" and V(X) is radially unbounded.

then the equilibrium point 1s globally asymptotically stable.




Krasovskii’s Method
plx)— fff+fo

o T r| Of
e axlf
— /7 (‘4 +A)f
=

Hence. it F (X ) 1s negative definite. V(X) 1s ndf.

So. by Lyapunov's theorem, X = 0 1s asymptotically stable.




Krasovskii’s Method

Note: The global asymptotic stability of the system 1s guaranteed

by the Global version of Lyapunov's direct method.

Comment: While the usage of this result 1s fairly

straight forward, 1ts applicability 1s limited 1n
practice since F (X ) for many systems

do not satisty the negative definite property.




Generalized Krasovskir’s Theorem

Theorem :

o (X)
0xX

A sufficent condition for the origin to be asymptotically stable is that

Tick o]

3 two pdf matrices P and O: 7X = 0, the matrix
F(X)=4"P+P4+0

1s negative semi-definite in some neighbourhood D of the origin.

In addition, if D =R" and ¥ (X)= f* (X) P f(X) is radially unbounded.

then the system is globally asymptotically stable.




Generalized Krasovskil’s
Theorem

Proof : V(X)=f"(X)Pf(X)
V(X)=|f"Pf+ /P[]
2 4%]}] Py
— f'PA f+f AP f
= fT(PA"+4P+0-0)f
:fT(PAT+AP+Q)f—£Ql

nodf : ndf
< 0 (ndf) Hence. the result.

o




Example

Problem: Analyze the stability behaviour of the following system

ek
x, = 2x,—6x,—2x,
Solution:
of —6 2
T et
e e 4
¥ e’ B e :
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Example

Eigen values of F:

At —4

==
—4  A+12+12x,

(A+12)" +(A+12)12x,2 —16 =0

e ST L R S e
N (244123, ) A +(128+144x,> ) = 0

N é[—(24+12x§)i \/(24+ 12:{:5)2 —4(128+144x,"




Example

2

:_(12+6x22):|:\/(12+6x22) (128 +144x,’)

0<(*) < (12+6x3)

<0 vx,eR
A is ndf in R’
Morever, V(X): I (X)f(X)

2

= (=6 +2x, )2 2k (2-‘“1 — 6x, — 2-“:23)
e e L HYH — 00

X =0 1s globally asymptotically stable.







