AC Fundamental

Simple Loop Generator: Whenever a conductor moves in a magnetic field, an emf is induced in it.

Fig.1: Simple Loop Generator
The amount of EMF induced into a coil cutting the magnetic lines of force is determined by the following three factors.

1. Speed - the speed at which the coil rotates inside the magnetic field.
2. Strength - the strength of the magnetic field.
3. Length - the length of the coil or conductor passing through the magnetic field.

What is instantaneous value?

Fig.2: Instantaneous Value

The instantaneous values of a sinusoidal waveform is given as the "Instantaneous value $=$ Maximum value $\mathrm{x} \sin \theta$ and this is generalized by the formula.

$$
v=V_{m} \operatorname{Sin} \theta
$$

Sinusoidal Waveform Construction

Fig.3: Wave form construction

Sinusoidal Quantities (Voltage \& Current)

Voltage or EMF is denoted by

$$
v=V_{m} \operatorname{Sin} \omega t
$$

OR $\quad e=E_{m} \operatorname{Sin} \omega t$

Fig. 4

Where $\quad V_{m}$ or $E_{m}=$ Maximum Value of Voltage or EMF v or $\mathrm{e}=$ Instantaneous value of Voltage or EMF $\omega=2 \Pi f=$ Angular frequency $\mathrm{f}=$ frequency in Hz

Current $\quad i=I_{m}$ Sinc ω

Note: In AC electrical theory every power source supplies a voltage that is either a sine wave of one particular frequency or can be considered as a sum of sine waves of differing frequencies. The good thing about a sine wave such as $\mathrm{V}(\mathrm{t})=\mathrm{A} \sin (\omega \mathrm{t}+\delta)$ is that it can be considered to be directly related to a vector of length A revolving in a circle with angular velocity ω. The phase constant δ is the starting angle at $\mathrm{t}=0$.
Following animated GIF link shows this relation.

```
y=
sine.gif
```

Phase difference, Phasor diagram and Leading \& lagging concepts: When two sine waves are produced on the same display, they may have some phase different, one wave is often said to be leading or lagging the other. Consider following two sine waves

$$
\begin{aligned}
& \mathrm{v}_{1}=\mathrm{V}_{\mathrm{m} 1} \sin (\omega \mathrm{t}+45) \\
& \mathrm{v}_{2}=\mathrm{V}_{\mathrm{m} 2} \sin (\omega \mathrm{t}+30)
\end{aligned}
$$

Fig. 5

Here $v_{1} \& v_{2}$ are having a phase difference of 15^{0}. The blue $\left(\mathrm{v}_{1}\right)$ vector is said to be leading the red $\left(\mathrm{v}_{2}\right)$ vector Or Conversely the red vector is lagging the blue vector.
This terminology makes sense in the revolving vector picture as shown in following GIF figure.

Displaced waveforms:

Fig. 6

Some Terminology

1. Wave form:

The shape of the curve.
2. Instantaneous value: The value at any instant of time.
3. Cycle: One complete set of +ve and -ve values
4. Time Period: Time taken to complete one cycle.
5. Frequency: Number of cycles completed in one second.

$$
f=\frac{1}{T} H z
$$

Average value of AC

Let

$$
i=I_{m} \operatorname{Sin} \omega t
$$

Average current

$$
\begin{aligned}
I_{a v} & =\frac{\text { Area of half cycle }}{\pi} \\
& =\frac{\int_{0}^{\pi} i d \omega t}{\pi}=\frac{\int_{0}^{\pi} I_{m} \operatorname{Sin} \omega t d \omega t}{\pi}
\end{aligned}
$$

Fig. 7

4 www.eedofdit.weebly.com,

$$
\begin{aligned}
& =\frac{I_{m}}{\pi} \int_{0}^{\pi} \operatorname{Sin} \omega t d \omega t=\frac{I_{m}}{\pi}[-\cos \omega t]_{0}^{\pi} \\
I_{a v} & =\frac{2}{\pi} I_{m}
\end{aligned}
$$

Similarly average value of ac voltage

$$
V_{a v}=\frac{2}{\pi} V_{m}
$$

Note: Average value of the following for complete cycle $=0$ $\sin \omega t$ $\cos \omega t$ $\sin \left(\omega t-\theta^{0}\right)$ $\cos \left(\omega t+\theta^{0}\right)$

RMS (Root Mean Square or Effective) Value:

Let

$$
i=I_{m} \operatorname{Sin} \omega t
$$

RMS current

$$
\begin{aligned}
I_{r m s} & =I=\sqrt{\frac{\text { Area of cycle of } i^{2}}{\pi}} \\
& =\sqrt{\frac{\int_{0}^{\pi} i^{2} d \omega t}{\pi}}=\sqrt{\frac{\int_{0}^{\pi} I_{m}^{2} \operatorname{Sin}^{2} \omega t d \omega t}{\pi}} \\
& =\sqrt{\frac{I_{m}^{2}}{\pi} \int_{0}^{\pi}\left(\frac{1-\cos 2 \omega t}{2}\right) d \omega t}=\sqrt{\frac{I_{m}^{2}}{\pi}\left[\frac{\omega t}{2}-\frac{\sin 2 \omega t}{4}\right]_{0}^{\pi}} \\
I_{r m s} & =\frac{I_{m}}{\sqrt{2}}
\end{aligned}
$$

Fig. 8

Similarly RMS value of ac voltage

$$
V_{r m s}=\frac{V_{m}}{\sqrt{2}}
$$

Peak Factor $\left(K_{\mathrm{p}}\right)$:

$$
K_{p}=\frac{\text { Maximum Value }}{R M S \text { Value }}=\frac{I_{m}}{I_{m} / \sqrt{2}}=\sqrt{2}=1.414 \quad \text { for complete sine wave }
$$

Form Factor (\mathbf{K}_{f}):

$$
K_{f}=\frac{R M S \text { Value }}{\text { Avarage Value }}=\frac{I_{m} / \sqrt{2}}{2 I_{m} / \pi}=\frac{\pi}{2 \sqrt{2}}=1.11 \quad \text { for complete sine wave }
$$

Example 1: Calculate the average current, effective voltage, peak factor \& form factor of the output waveform of the half wave rectifier.

Solution:

Solution:
Fig. 9

$$
\begin{aligned}
& V_{\text {avg }}=\frac{\int_{0}^{\pi} V_{m} \operatorname{Sin} \omega t d \omega t}{2 \pi}=\frac{V_{m}}{2 \pi}[\cos 0-\sin \pi]=\frac{V_{m}}{\pi} \\
& V_{r m s}=\sqrt{\frac{\int_{0}^{\pi} V_{m}^{2} \operatorname{Sin}^{2} \omega t d \omega t}{2 \pi}}=\sqrt{\frac{V_{m}^{2}}{2 \pi}\left[\frac{\omega t}{2}-\frac{\sin 2 \omega t}{4}\right]_{0}^{2 \pi}}=\frac{V_{m}}{2} \\
& K_{p}=\frac{\text { Maximum Value }}{R M S \text { Value }}=\frac{V_{m}}{V_{m} / 2}=2 \\
& K_{f}=\frac{\text { RMS Value }}{\text { Avarage Value }}=\frac{V_{m} / 2}{V_{m} / \pi}=\frac{\pi}{2}=1.57
\end{aligned}
$$

Question: Find the above for the output waveform of the full wave rectifier.
Ans: $V_{\text {avg }}=\frac{2 V_{m}}{\pi}, V_{r m s}=\frac{V_{m}}{\sqrt{2}}, K_{p}=1.414 \& K_{f}=1.11$
Addition and subtraction of alternating quantities: Consider the following examples
Example 2: Three sinusoidal voltages acting in series are given by

$$
\begin{aligned}
& \mathrm{v}_{1}=10 \operatorname{Sin} 440 \mathrm{t} \\
& \mathrm{v}_{2}=10 \sqrt{2} \operatorname{Sin}(440 \mathrm{t}-45) \\
& \mathrm{v}_{3}=20 \operatorname{Cos} 440 \mathrm{t}
\end{aligned}
$$

Determine (i) an expression for resultant voltage (ii) the frequency and rms value of resultant voltage.
Solution: Phasor diagram method:
Voltage v3 may be rewritten as

$$
v_{3}=20 \operatorname{Sin}\left(440 t+90^{\circ}\right)
$$

Phasor diagram all voltages will be as shown bellow (Taking maximum values)

Fig. 10: Phasor Diagram
(i) X component of maximum value of resultant voltage

$$
\mathrm{V}_{\mathrm{mx}}=10 \operatorname{Cos} 0^{0}+10 \sqrt{ } 2 \operatorname{Cos} 45^{0}+20 \operatorname{Cos} 90^{\circ}=20
$$

Y component of maximum value of resultant voltage

$$
V_{\mathrm{my}}=10 \operatorname{Sin} 0^{0}-10 \sqrt{ } 2 \operatorname{Sin} 45^{0}+20 \operatorname{Sin} 90^{\circ}=10
$$

So maximum value of resultant voltage

$$
\begin{aligned}
& V_{m}=\sqrt{V_{m x}^{2}+V_{m y}^{2}}=\sqrt{400+100}=10 \sqrt{5} \\
& \tan \phi=\frac{V_{m y}}{V_{m x}}=\frac{10}{20} \Rightarrow \phi=26.56^{0}
\end{aligned}
$$

So resultant voltage

$$
\begin{array}{ll}
\mathrm{v}=\mathrm{Vm} \operatorname{Sin}(\omega \mathrm{t}+\phi) & \\
\mathbf{v}=\mathbf{1 0} \sqrt{ } \mathbf{5} \operatorname{Sin}\left(\mathbf{4 4 0 t}+\mathbf{2 6 . 5 6} \mathbf{6}^{\mathbf{0}}\right) & \text { Ans } \\
\omega=440 \text { or } 2 \pi \mathrm{f}=440=>\mathbf{f}=\mathbf{7 0} \mathbf{~ H z} & \text { Ans } \\
\mathrm{V}_{\mathrm{rms}}=\mathrm{V}_{\mathrm{m}} / \sqrt{ } 2=\mathbf{1 5 . 8 1} \mathrm{V} & \text { Ans }
\end{array}
$$

Question: Draw the phasor diagram of following waveform

$$
\begin{aligned}
& \mathrm{v}_{1}=100 \operatorname{Sin} 500 \mathrm{t} \\
& \mathrm{v}_{2}=200 \operatorname{Sin}(500 \mathrm{t}+\pi / 3) \\
& \mathrm{v}_{3}=-50 \operatorname{Cos} 500 \mathrm{t} \\
& \mathrm{v}_{4}=150 \operatorname{Sin}(500 \mathrm{t}-\pi / 4)
\end{aligned}
$$

Note: $v_{3}=-50 \operatorname{Cos} 500 t=+50 \operatorname{Sin}(500 t-\pi / 2)$

Single phase AC circuit:

1. Purely Resistive Circuit:

Let applied voltage

$$
\begin{equation*}
\mathrm{v}=\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t} \tag{1}
\end{equation*}
$$

According to Ohm's Law
$v=i R$
$\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t}=\mathrm{i} \mathrm{R}$
$\mathrm{i}=\mathrm{V}_{\mathrm{m}} / \mathrm{R} \operatorname{Sin} \omega \mathrm{t}$
Let
So

$$
\begin{equation*}
\mathrm{V}_{\mathrm{m}} / \mathrm{R}=\mathrm{I}_{\mathrm{m}} \tag{2}
\end{equation*}
$$

i $=I_{m} \operatorname{Sin} \omega t$

Phasor diagram

Fig .11b
$\Phi=0, \mathrm{PF} \cos \Phi=1$, No phase different or $\mathrm{V} \& \mathrm{I}$ are in same phase

Note:

1. Cosine of angle between Voltage (V) and current (I) is known as power factor i.e $\mathrm{PF}=\operatorname{Cos} \phi$
2. If current lags $=>$ power factor lags
3. If current leads $=>$ power factor leads

> Power consumed

Instantaneous power

$$
\begin{aligned}
\mathrm{p} & =\mathrm{v}^{*} \mathrm{i} \\
& =\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t}^{*} \mathrm{I}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t} \\
& =\mathrm{V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \operatorname{Sin}^{2} \omega \mathrm{t}
\end{aligned}
$$

Average power

$$
\begin{aligned}
& P=\frac{\int_{0}^{\pi} p d \omega t}{\pi}=\frac{1}{\pi} \int_{0}^{\pi} V_{m} I_{m} \operatorname{Sin}^{2} \omega t d \omega t \\
& P=\frac{1}{\pi} \int_{0}^{\pi} V_{m} I_{m}\left(\frac{1-\cos 2 \omega t}{2}\right) d \omega t=\frac{1}{\pi} \int_{0}^{\pi} \frac{V_{m} I_{m}}{2} d \omega t-\frac{1}{\pi} \int_{0}^{\pi} \cos 2 \omega t \\
& P=\frac{V_{m} I_{m}}{2}=\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}}=V_{r m s} I_{r m s}=V I
\end{aligned}
$$

Waveform

Fig. 11c
Note: It is also clear from the above graph that p is having some average value.
Example 3: A 250 Volts (RMS), 50 Hz voltage is applied across a circuit consisting of a pure resistance of 20 ohm . Determine
i. The current flowing through the circuit
ii. Power absorbed by circuit
iii. Expression for voltage and current
iv. Draw waveform and phasor diagram.

Solution:

i. $\quad I_{r m s}=I=\frac{V}{R}=\frac{250}{20}=12.5 \mathrm{Amp}$
ii. Power absorbed $=\mathrm{VI}=250 * 12.5=3125$ Watt
iii. $\quad v=250 \sqrt{2} \sin 2 \pi(50) t=250 \sqrt{2} \sin 100 \pi t$

$$
i=12.5 \sin 100 \pi t
$$

Ans
Ans
Ans
Ans
iv. See figure 11c

2. Purely Inductive Circuit:

Let applied voltage

$$
\begin{equation*}
\mathrm{v}=\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t} \tag{1}
\end{equation*}
$$

Fig. 12a

When an alternating voltage is applied to purely inductive coil, an emf known as self induced emf is induced in the coil which opposes the applied voltage. Self induced emf

$$
e_{L}=-L \frac{d i(t)}{d t}
$$

Since applied voltage at every instant is equal and opposite to self induced emf We have $\quad v=-e_{L}$

$$
\begin{aligned}
V_{m} \operatorname{Sin} \omega t & =-\left[-L \frac{d i(t)}{d t}\right] \\
d i & =\frac{1}{L} V_{m} \operatorname{Sin} \omega t d t
\end{aligned}
$$

Integrating

$$
i=\int \frac{1}{L} V_{m} \operatorname{Sin} \omega t d t=\frac{1}{L} V_{m}\left[\frac{\operatorname{Cos} \omega t}{\omega}\right]=\frac{V_{m}}{\omega L} \operatorname{Sin}(\omega t-\pi / 2)
$$

Let $\quad I_{m}=\frac{V_{m}}{\omega L}$
Here $\quad \omega \mathrm{L}=\mathrm{X}_{\mathrm{L}}$ know as inductive reactance
So

$$
i=I_{m} \operatorname{Sin}(\omega t-\pi / 2)
$$

Here current lags by 90°.

Phasor diagram

$\Phi=90^{\circ}$, PF $\operatorname{Cos} \Phi=0$, Phase
different between V \& I is 90°. Current (I) lags by 90° from voltage (V).
> Power consumed
Instantaneous power

$$
\begin{aligned}
\mathrm{p} & =\mathrm{v}^{*} \mathrm{i} \\
& =\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t}^{*} \mathrm{I}_{\mathrm{m}} \operatorname{Sin}\left(\omega \mathrm{t}-90^{0}\right) \\
& =-\mathrm{V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{C} \operatorname{Cos} \omega \mathrm{t} \\
& =-\mathrm{V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} / 2 \operatorname{Sin} 2 \omega \mathrm{t}
\end{aligned}
$$

Average power

$$
P=\frac{\int_{0}^{\pi} p d \omega t}{\pi}=A v a\left[-\frac{V_{m} I_{m}}{2} \operatorname{Sin} 2 \omega t\right]=0
$$

Hence NO power is consumed in purely inductive circuit.

$>$ Waveform

Fig. 12c
Note: It is also clear from the above graph that p is having ZERO average value.
Example 4: The voltage and current thorough a circuit element are $v=100 \sin \left(314 t+45^{0}\right) V$ and $i=10 \sin \left(314 t+315^{0}\right) A$.
i. Identify the circuit elements
ii. Find the value
iii. Obtain expression for power

Solution:

i. Phase difference $=315-45=90^{\circ}$ and I lags v by 90°, see the phasor diagram. So it is pure inductor

Fig .13
ii. Inductance $X_{L}=\omega \mathrm{L} \quad \Rightarrow 10=314 \mathrm{~L} \quad \Rightarrow \quad \mathrm{~L}=10 / 314 \mathrm{H}$ Ans
iii. $\quad p=100 \sin \left(314 t+45^{0}\right) \times 10 \sin \left(314 t+315^{\circ}\right)=\frac{1000}{2} \sin 628 t \quad$ Ans
3. Purely Capacitive Circuit:

Let applied voltage

$$
\begin{equation*}
\mathrm{v}=\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t} \tag{1}
\end{equation*}
$$

Fig. 14a

Charge

$$
\begin{aligned}
& Q=C v \\
& Q=C V_{m} \operatorname{Sin} \omega t
\end{aligned}
$$

And we know $\quad i=\frac{d q}{d t}=\frac{d}{d t} C V_{m} \operatorname{Sin} \omega t d t=V_{m} C \omega \operatorname{Cos} \omega t$

$$
i=\frac{V_{m}}{1 / \omega C} \operatorname{Sin}(\omega t+\pi / 2)
$$

Let $\quad I_{m}=\frac{V_{m}}{1 / \omega C}$
Here $\quad \frac{1}{\omega C}=X_{C}$ know as capacitive reactance
So

$$
i=I_{m} \operatorname{Sin}(\omega t+\pi / 2)
$$

Here current leads by 90°.
> Phasor diagram
$\Phi=90^{\circ}, \mathrm{PF} \operatorname{Cos} \Phi=0$, Phase different between V \& I is 90°. Current (I) leads by 90° from voltage (V).

Fig .14b

> Power consumed
Instantaneous power

$$
\begin{aligned}
\mathrm{p} & =\mathrm{v}^{*} \mathrm{i} \\
& =\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t}^{*} \mathrm{I}_{\mathrm{m}} \operatorname{Sin}\left(\omega \mathrm{t}+90^{0}\right) \\
& =\mathrm{V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{C} \operatorname{Cos} \omega \mathrm{t} \\
& =\mathrm{V}_{\mathrm{m}} \mathrm{I}_{\mathrm{m}} / 2 \operatorname{Sin} 2 \omega \mathrm{t}
\end{aligned}
$$

Average power

$$
P=\frac{\int_{0}^{\pi} p d \omega t}{\pi}=A v a\left[\frac{V_{m} I_{m}}{2} \operatorname{Sin} 2 \omega t\right]=0
$$

Hence NO power is consumed in purely capacitive circuit.

> Waveform

Fig. 14c

Note: It is also clear from the above graph that p is having ZERO average value.
Example 5: A $318 \mu \mathrm{~F}$ capacitor is connected to $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine
i. Capacitive reactance offered by the capacitor
ii. The maximum current
iii. RMS value of current drawn by capacitor
iv. Expression for voltage \& current

Solution:

i. $\quad \mathrm{X}_{\mathrm{C}}=1 / \omega \mathrm{C}=1 / 2 \pi \mathrm{fC}=10 \mathrm{Ohm}$
ii. $\quad \mathrm{I}_{\mathrm{m}}=\mathrm{V}_{\mathrm{m}} / \mathrm{X}_{\mathrm{C}}=200 \sqrt{2} / 10=20 \sqrt{ } 2 \mathrm{~A}$
iii. $\quad \mathrm{I}_{\mathrm{rms}}=\mathrm{I}_{\mathrm{m}} / \sqrt{2}=20 \mathrm{~A}$
iv. $\quad v=200 \sqrt{2} \sin 100 \pi t$ and $i=20 \sqrt{2} \sin (100 \pi t+\pi / 2)$

Ans
Ans Ans

4. R-L Circuit:

Let the applied voltage is

$$
\begin{equation*}
\mathrm{v}=\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t} \tag{1}
\end{equation*}
$$

Voltage across resistance

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}=\mathrm{I} . \mathrm{R} \\
& \mathrm{~V}_{\mathrm{L}}=\mathrm{I} . \mathrm{X}_{\mathrm{L}} \\
& \\
& \quad=\mathrm{I} .(\omega \mathrm{L})=\mathrm{I} .(2 \pi \mathrm{fL})
\end{aligned}
$$

From phasor diagram

$$
\begin{aligned}
& \quad \begin{aligned}
V & =\sqrt{V_{R}^{2}+V_{L}^{2}}=\sqrt{(I R)^{2}+\left(X_{L} I\right)^{2}} \\
V & =I \sqrt{R^{2}+X_{L}^{2}}=I Z \\
\text { Where } \quad Z & =\sqrt{R^{2}+X_{L}^{2}} \text { know as impedance }
\end{aligned} \text {. }
\end{aligned}
$$

From phasor diagram, " V " is lagging behind " V " by an angle ϕ

$$
\tan \phi=\frac{V_{L}}{V_{R}}=\frac{I X_{L}}{I R}=\frac{X_{L}}{R} \Rightarrow \phi=\tan ^{-1} \frac{X_{L}}{R}
$$

So

$$
i=I_{m} \operatorname{Sin}(\omega t-\phi)
$$

Where $\quad I_{m}=\frac{V_{m}}{Z}$

Phasor diagram

Phase different
between V \& I is ϕ. Current (I) lags by ϕ^{0} from voltage (V).
$V_{R} \& I$ are in same phase, V_{L} is leading by an angle of 90^{0} from I etc.

Fig. 15b
> Power consumed
Instantaneous power

$$
\begin{aligned}
\mathrm{p} & =\mathrm{v}^{* \mathrm{i}} \\
& =\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t} * \mathrm{I}_{\mathrm{m}} \operatorname{Sin}\left(\omega \mathrm{t}-\phi^{0}\right) \\
& =\frac{V_{m} I_{m}}{2} 2 \operatorname{Sin} \omega t \operatorname{Sin}(\omega t-\phi)=\frac{V_{m} I_{m}}{2}[\cos \phi-\cos (2 \omega t-\phi)]
\end{aligned}
$$

Average power

$$
\begin{aligned}
& P=A v a\left[\frac{V_{m} I_{m}}{2}[\cos \phi-\cos (2 \omega t-\phi)]\right] \\
& =A v a\left[\frac{V_{m} I_{m}}{2} \cos \phi\right]-A v a\left[\frac{V_{m} I_{m}}{2} \cos (2 \omega t-\phi)\right] \\
& P=\frac{V_{m} I_{m}}{2} \cos \phi \\
& P=\frac{V_{m}}{\sqrt{2}} \frac{I_{m}}{\sqrt{2}} \cos \phi=V I \cos \phi
\end{aligned}
$$

$>$ Waveform

Fig. 15c
Voltage triangle and Impedance triangle:

Power factor: $\operatorname{Cos} \phi=V_{R} / V=R / Z$

Active power, reactive power, apparent power and power factor:

Active power Reactive power Apparent Power
$\mathrm{P}=\mathrm{VI} \operatorname{Cos} \phi=\mathrm{I}^{2} \mathrm{R}$
$Q=V I \operatorname{Sin} \phi=I^{2} X$
$\mathrm{S}=\mathrm{VI}=\mathrm{I}^{2} \mathrm{Z}$

Unit: Watt, KW
Unit: VAR, KVAR
Unit: VA, KVA

P
Power Triangle
Fig. 15e
Power factor: $\cos \phi=$ Active power/Apparent power
Example 6: A resistance and inductance are connected in series across a voltage $v=283 \sin (314 t) \&$ current expression as $i=4 \sin (314 t-\pi / 4)$. Find the value of resistance, inductance and power factor.

Solution:

$\mathrm{Z}=\mathrm{V}_{\mathrm{m}} / \mathrm{I}_{\mathrm{m}}=70.75$
$\mathrm{R}=\mathrm{Z} \cos \phi=70.75^{*} \cos (\mathrm{\pi} / 4)=50.027$ ohm Ans
$\mathrm{X}_{\mathrm{L}}=\mathrm{Z} \sin \phi=70.75^{*} \sin (\pi / 4)=50.027$ ohm $=\omega \mathrm{L}=>\mathrm{L}=0.1592 \mathrm{H} \quad$ Ans
Power factor $=\cos \phi=\cos (\pi / 4)=1 / \sqrt{2}=0.707$
Ans
Example 7: $i=14.14 \sin (\omega t-\pi / 6)$ passes in an electric circuit when a voltage of $v=141.4 \sin \omega t$ is applied to it. Determine the power factor of the circuit, the value of true power, apparent power and circuit components.

Solution:

$\mathrm{Z}=\mathrm{V}_{\mathrm{m}} / \mathrm{I}_{\mathrm{m}}=141.4 / 14.14=10 \mathrm{Ohm}$
PF $\cos \phi=\cos (\pi / 6)=0.866 \quad$ Ans
$\mathrm{P}=\mathrm{VI} \cos \phi=(141.4 / \sqrt{ } 2)(14.14 / \sqrt{ } 2)^{*} 0.866=866 \mathrm{~W} \quad$ Ans
$\mathrm{S}=\mathrm{VI}=(141.4 / \sqrt{ } 2)(14.14 / \sqrt{ } 2)=1000 \mathrm{~W}$ Ans
$\mathrm{R}=\mathrm{Z} \cos \phi=10^{*} 0.866=8.66 \quad$ Ans
$\mathrm{X}_{\mathrm{L}}=\mathrm{Z} \sin \phi=10 * 0.5=5 \mathrm{Ohm}$ Ans
5. R-C Circuit:

Let the applied voltage is

$$
\begin{equation*}
\mathrm{v}=\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t} \tag{1}
\end{equation*}
$$

Voltage across resistance
Voltage across inductance

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{R}}=\mathrm{I} . \mathrm{R} \\
& \mathrm{~V}_{\mathrm{C}}=\mathrm{I} . \mathrm{X}_{\mathrm{C}} \\
& \\
& =\mathrm{I} .(1 / \omega \mathrm{C})=\mathrm{I} .(1 / 2 \pi \mathrm{fC})
\end{aligned}
$$

From phasor diagram

$$
\begin{aligned}
& V=\sqrt{V_{R}^{2}+V_{C}^{2}}=\sqrt{(I R)^{2}+\left(X_{C} I\right)^{2}} \\
& V=I \sqrt{R^{2}+X_{C}^{2}}=I Z
\end{aligned}
$$

Where $\quad Z=\sqrt{R^{2}+X_{C}{ }^{2}}$ know as impedance
From phasor diagram, " I " is leading " V " by an angle ϕ

$$
\tan \phi=\frac{V_{C}}{V_{R}}=\frac{I X_{C}}{I R}=\frac{X_{C}}{R} \Rightarrow \phi=\tan ^{-1} \frac{X_{C}}{R}
$$

So

$$
i=I_{m} \operatorname{Sin}(\omega t+\phi)
$$

Where $\quad I_{m}=\frac{V_{m}}{Z}$
> Phasor diagram
Phase different between V \& I is ϕ. Current (I) leads by ϕ^{0} from voltage (V).
$\mathrm{V}_{\mathrm{R}} \& \mathrm{I}$ are in same phase, V_{C} is lagging by an angle of
 90° from I etc.

Power consumed
Instantaneous power

$$
\begin{aligned}
\mathrm{p} & =\mathrm{v}^{*} \mathrm{i} \\
& =\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t}^{*} \mathrm{I}_{\mathrm{m}} \operatorname{Sin}\left(\omega \mathrm{t}+\phi^{0}\right) \\
& =\frac{V_{m} I_{m}}{2} 2 \sin \omega t \operatorname{Sin}(\omega t+\phi)=\frac{V_{m} I_{m}}{2}[\cos \phi-\cos (2 \omega t+\phi)]
\end{aligned}
$$

Similar to R-L circuit average power

$$
P=V I \cos \phi
$$

> Waveform

Fig. 16c

Note: Similar to R-L circuit we can have voltage triangle and power triangle.

6. R-L-C Circuit:

Fig. 17a
Let the applied voltage is

$$
\begin{equation*}
\mathrm{v}=\mathrm{V}_{\mathrm{m}} \operatorname{Sin} \omega \mathrm{t} \tag{1}
\end{equation*}
$$

Voltage across resistance
Voltage across inductance
Voltage across inductance
$\mathrm{V}_{\mathrm{R}}=\mathrm{I} . \mathrm{R}$
$V_{L}=I . X_{L}$
$V_{C}=I . X_{C}$

From phasor diagram

$$
\begin{aligned}
& V=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}}=\sqrt{(I R)^{2}+\left(I X_{L}-I X_{C}\right)^{2}} \\
& V=I \sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=I Z
\end{aligned}
$$

Where

$$
Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \text { know as impedance }
$$

From phasor diagram, "I" is lagging " V " by an angle ϕ

$$
\tan \phi=\frac{V_{L}-V_{C}}{V_{R}}=\frac{I X_{L}-I X_{C}}{I R}=\frac{X_{L}-X_{C}}{R} \Rightarrow \phi=\tan ^{-1} \frac{X_{L}-X_{C}}{R}
$$

So

$$
i=I_{m} \operatorname{Sin}(\omega t-\phi)
$$

Where $\quad I_{m}=\frac{V_{m}}{Z}$

Phasor diagram

Fig .17b Assuming $\mathrm{V}_{\mathrm{L}}>\mathrm{V}_{\mathrm{C}}$

> Power consumed

Average power (similar to R-L circuit)

$$
P=V I \cos \phi
$$

Different cases:

1. VL $>\mathrm{VC} \quad=>$ Inductive circuit, "I" lags "V"
2. VL<VC => Capacitive circuit, "I" leads "V"
3. $\mathrm{VL}=\mathrm{VC} \quad \Rightarrow$ Resistive circuit, " I " \& " V " are in same phase, power factor PF is Unity. This condition is called as electrical resonance.
Example 8: A series RLC circuit consisting of resistance of 20 Ohm, inductance of 0.2 H and capacitance of $150 \mu \mathrm{~F}$ is connected across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ source. Calculate
I. Current
II. Magnitude \& nature of power factor

Solution:

$$
\begin{aligned}
& \mathrm{R}=20 \mathrm{Ohm} \\
& \mathrm{X}_{\mathrm{L}}=2 \mathrm{rfL}=2 \pi * 50 * 0.2=62.8 \mathrm{Ohm} \\
& \mathrm{X}_{\mathrm{C}}=1 / 2 \mathrm{rfC}=1 /\left(2 \pi * 50 * 150 * 10^{-6}\right)=21.23 \\
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{20^{2}+(62.8-21.23)^{2}}=46.13
\end{aligned}
$$

i. $\quad \mathrm{I}=\mathrm{V} / \mathrm{Z}=4.98 \mathrm{~A}$

Ans
ii. $\mathrm{PF}=\mathrm{R} / \mathrm{Z}=0.433 \quad$ lagging $\left(\mathrm{As} \mathrm{X}_{\mathrm{L}}>\mathrm{X}_{\mathrm{C}}\right)$ Ans

Impedance(Z):

$Z=\sqrt{R^{2}+X^{2}}$	Ω, Ohm	
Where	$\mathrm{R}=$ Resistance	Ω
	$\mathrm{X}=$ Reactance	Ω
	$\mathrm{PF}: \operatorname{Cos} \phi=\mathrm{R} / \mathrm{Z}$	

Impedance Triangle Fig. 18

Admittance (\mathbf{Y}) : It is reciprocal of impedance
$\mathrm{Y}=1 / \mathrm{Z}$
$Y=\sqrt{G^{2}+B^{2}}$
Where

$\mathrm{G}=$ Conductance	Ω^{-1}
$\mathrm{X}=$ Susceptance	Ω^{-1}

PF: $\operatorname{Cos} \phi=\mathrm{G} / \mathrm{Y}$
$G=Y \cos \phi=(1 / Z)(R / Z)=R / Z^{2}$.
$B=Y \operatorname{Sin} \phi=(1 / Z)(X / Z)=X / Z^{2}$.

AdmittanceTriangle

Fig. 19

Parallel Circuits: There are $\mathbf{3}$ methods for solving parallel circuits

1. Phasor Method: Consider the following circuit

Fig. 20a
For branch $1 \quad Z_{1}=\sqrt{R_{1}{ }^{2}+\left(X_{L 1}-X_{C 1}\right)^{2}}$

$$
I_{1}=\frac{V}{Z_{1}}
$$

$$
\cos \Phi_{1}=\frac{R_{1}}{Z_{1}}
$$

$+\Phi_{1}$ (Leading PF) if $\mathrm{X}_{\mathrm{L} 1}>\mathrm{X}_{\mathrm{C} 1} \quad$ (Inductive circuit)
$-\Phi_{1}$ (Lagging PF) if $\mathrm{X}_{\mathrm{L} 1}<\mathrm{X}_{\mathrm{C} 1} \quad$ (Capacitive circuit)
Similarly for branch 2 and 3 we have $Z_{2}, I_{2}, \operatorname{Cos} \Phi_{2}$ and $Z_{3}, I_{3}, \operatorname{Cos} \phi_{3}$ respectively.
Now we can draw the phasor diagram as shown bellow assuming any values for $\mathrm{I}_{1}, \mathrm{I}_{2}$, I_{3} and $\phi_{1}, \phi_{2}, \phi_{3}$

Fig .20b

Resultant current I which will be the phasor sum of $\mathrm{I}_{1}, \mathrm{I}_{2} \& \mathrm{I}_{3}$ can be determine by using any of following method
i. Parallelogram method
ii. Resolving branch current $\mathrm{I}_{1}, \mathrm{I}_{2} \& \mathrm{I}_{3}$ along x and y -axis.

Component of resultant current "I" along x-axis
$I \operatorname{Cos} \Phi=I_{1} \operatorname{Cos} \Phi_{1}+I_{2} \operatorname{Cos} \Phi_{2}+I_{3} \operatorname{Cos} \Phi_{3}$
Component of resultant current " I " along x -axis
$\operatorname{Sin} \Phi=I_{1} \operatorname{Sin} \Phi_{1}+I_{2} \operatorname{Sin} \Phi_{2}+I_{3} \operatorname{Sin} \Phi_{3}$

$$
I=\sqrt{(\operatorname{ISin} \Phi)^{2}+(I \operatorname{Cos} \Phi)^{2}} \quad \& \quad \tan \Phi=\frac{I \operatorname{Sin} \Phi}{I \operatorname{Cos} \Phi}
$$

2. Admittance Method: Consider the following circuit

Fig. 21
We know conductance $G=\frac{R}{Z^{2}} \quad \quad \Rightarrow>$ find out $\mathrm{G}_{1}, \mathrm{G}_{2} \& \mathrm{G}_{3}$
We know susceptance $B=\frac{X}{Z^{2}} \quad \Rightarrow>$ find out $\mathrm{B}_{1}, \mathrm{~B}_{2} \& \mathrm{~B}_{3}$
Total conductance

$$
\mathrm{G}=\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G}_{3}
$$

Total susceptance

$$
\mathrm{B}=\mathrm{B}_{1}+\mathrm{B}_{2}+\mathrm{B}_{3}
$$

Total Admittance

$$
Y=\sqrt{G^{2}+Y^{2}}
$$

So

$$
\begin{aligned}
& \mathrm{V}=\mathrm{IZ} \quad \Rightarrow \quad \mathrm{I}=\mathrm{V} / \mathrm{Z}=\mathrm{VY} \\
& \mathrm{I}_{1}=\mathrm{VY}_{1} \\
& \mathrm{I}_{2}=\mathrm{VY}_{2} \\
& \mathrm{I}_{3}=\mathrm{VY}_{3}
\end{aligned}
$$

3. Symbolic or \mathbf{j}-notation Method:

Consider following voltage and current

$$
\begin{aligned}
& v=V_{m} \sin \omega t \\
& i=I_{m} \sin (\omega t-\theta)
\end{aligned}
$$

Wave form and phasor diagram will be as shown bellow

Fig. 22a

Therefore either the time waveform of the rotating phasor or the phasor diagram can be used to describe the system. Since both the diagrams, the time diagram and the phasor diagram convey the same information, the phasor diagram being much more simpler, it is used for an explanation in circuit theory analysis. Since electrical data is given in terms of rms value, we draw phasor diagram with phasor values as rms rather than peak value used so far.

Above voltage can be represented by
$\mathrm{V}=\mathrm{V}_{\mathrm{x}}+\mathrm{j} \mathrm{V}_{\mathrm{y}} \quad$ Cartesian Co-ordinates
$\mathrm{V}=|\mathrm{V}| \angle \theta \quad$ in polar coordinates.
Here
$\mathrm{V}_{\mathrm{x}}=$ Component of V along x -axis
$\mathrm{V}_{\mathrm{y}}=$ Component of V along y -axis
j is an operator which when multiplied to a phasor rotates the phasor 90° anticlockwise and $\mathrm{j}=\sqrt{ }(-1)$ or $\mathrm{j}^{2}=-1$

Fig. 22b: Phasor Representation
Hence a voltage or current can be represented by a complex number.
Note:
In Phasor algebra:

- Addition \& Subtraction is done in Cartesian form.
- Multiplication, Division, power and roots are done in polar form.

Phasor Algebra applied to single phase circuit
I. R-L series circuit:

Fig. 23

- Consider I as reference

$$
\begin{aligned}
& I=I \angle 0^{0} \\
&=I+j 0 \\
& \mathrm{~V}_{\mathrm{R}}=\mathrm{IR}+\mathrm{j} 0 \\
& \mathrm{~V}_{\mathrm{L}}=0+\mathrm{j} \mathrm{X}_{\mathrm{L}} \\
& \mathrm{~V}=\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{L}} \\
&==\mathrm{IR}+\mathrm{j} 0)+\left(0+\mathrm{j} \mathrm{X}_{\mathrm{L}}\right) \\
&=\mathrm{IR}+\mathrm{j} \mathrm{X}_{\mathrm{L}}=\mathrm{I}\left(\mathrm{R}+\mathrm{j} \mathrm{X}_{\mathrm{L}}\right) \\
& \mathrm{V}=\mathrm{IZ} \\
& \mathrm{Z}=\mathrm{R}+\mathrm{j} \mathrm{X}_{\mathrm{L}}=Z \angle \theta \\
& \mathrm{~V}=\mathrm{V}+\mathrm{j} 0=V \angle 0^{0} \\
& I=\frac{V}{Z}=\frac{V \angle 0^{0}}{Z \angle \theta}=\frac{V}{Z} \angle-\theta
\end{aligned}
$$

Voltage drop across resistance
Voltage drop across inductance
So total voltage

Where

- Consider V as reference

II. R-C series circuit:

Fig. 24

- Consider I as reference

Voltage drop across resistance
Voltage drop across capatance
So total voltage

Where

- Consider V as reference

$$
\begin{aligned}
& I=I \angle 0^{0} \\
&=I+j 0 \\
& \mathrm{~V}_{\mathrm{R}}=\mathrm{IR}+\mathrm{j} 0 \\
& \mathrm{~V}_{\mathrm{L}}=0-\mathrm{j} \mathrm{X}_{\mathrm{C}} \\
& \mathrm{~V}=\mathrm{V}_{\mathrm{R}}+\mathrm{V}_{\mathrm{C}} \\
&=(\mathrm{IR}+\mathrm{j} 0)+\left(0-\mathrm{j} \mathrm{X}_{\mathrm{C}}\right) \\
&=\mathrm{IR}-\mathrm{j} \mathrm{X}_{\mathrm{C}}=\mathrm{I}\left(\mathrm{R}-\mathrm{j} \mathrm{X}_{\mathrm{C}}\right) \\
& \mathrm{V}=\mathrm{IZ} \\
& \mathrm{Z}=\mathrm{R}-\mathrm{j} \mathrm{X}_{\mathrm{C}}=\mathrm{Z} \angle-\theta \\
& \mathrm{V}=\mathrm{V}+\mathrm{j} 0=V \angle 0^{0}
\end{aligned}
$$

$$
I=\frac{V}{Z}=\frac{V \angle 0^{0}}{Z \angle-\theta}=\frac{V}{Z} \angle \theta
$$

- Power determination:

Let $\mathrm{v}=2+3 \mathrm{j}$ volts $\& \mathrm{i}=3-\mathrm{j} 1 \mathrm{Amp}$
$v \times \bar{i}=(2+3 j) \times(3+j 1)=3+j 11$
Here
Active power or real power $=\operatorname{Re}(v \times \bar{i})=3$ Watt
Reactive power $=\operatorname{Im}(v \times \bar{i})=11$ VAR

III. R-L-C parallel circuit:

Fig. 25
For branch 1:

$$
\begin{aligned}
\mathrm{Z}_{1} & =\mathrm{R}_{1}+\mathrm{j} X_{1} \quad \text { Where } X_{1}=X_{L 1}-X_{C 1} \\
I_{1} & =\frac{V}{Z_{1}}=\frac{V+j 0}{R_{1}+j X_{1}}=\frac{V+j 0}{R_{1}+j X_{1}} \times\left(\frac{R_{1}-j X_{1}}{R_{1}-j X_{1}}\right) \\
I_{1} & =V\left(\frac{R_{1}}{R_{1}^{2}+X_{1}^{2}}-j \frac{X_{L 1}}{R_{1}^{2}+X_{1}^{2}}\right)
\end{aligned}
$$

Similarly for branch $2 \& 3$

$$
\begin{aligned}
& I_{2}=V\left(\frac{R_{2}}{R_{2}{ }^{2}+X_{2}{ }^{2}}-j \frac{X_{2}}{R_{2}{ }^{2}+X_{2}{ }^{2}}\right) \quad \text { Where } X_{2}=X_{L 2}-X_{C 2} \\
& I_{3}=V\left(\frac{R_{3}}{R_{3}{ }^{2}+X_{3}{ }^{2}}-j \frac{X_{3}}{R_{3}{ }^{2}+X_{3}{ }^{2}}\right) \text { Where } X_{3}=X_{L 3}-X_{C 3}
\end{aligned}
$$

So total current

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}
$$

IV. Series-parallel circuit:

- Impedances in series

$$
\mathrm{Z}_{\mathrm{eq}}=\mathrm{Z}_{1}+\mathrm{Z}_{2}+\mathrm{Z}_{3}+\ldots
$$

- Impedances in parallel

$$
\frac{1}{Z_{e q}}=\frac{1}{Z_{1}}+\frac{1}{Z_{2}}+\frac{1}{Z_{3}}+\ldots
$$

- A series - parallel ac circuit can be solved in same manner as that of DC series parallel circuit except that complex impedances are used instead of resistances.

Example 9: A 15 mH inductor is in series with a parallel combination of a 20 ohm resistance \& $20 \mu \mathrm{~F}$ capacitor. If " ω " of applied voltage is 1000 . Find
i. Total impedance
ii. Total admittance
iii. Current in each branch if applied voltage is 230 V

Solution:

Fig. 26
$\mathrm{Z}_{1}=\mathrm{R}=80 \Omega$
$\mathrm{Z}_{2}=-\mathrm{j} \mathrm{X}_{\mathrm{C}}=-j \frac{1}{\omega C}=\frac{-j}{1000 \times 20 \times 10^{-6}}=-50 j \Omega$
$\mathrm{Z}_{3}=\mathrm{j} \mathrm{X}_{\mathrm{L}}=\mathrm{j} \omega \mathrm{L}=\mathrm{j} 1000 \times 15 \times 10^{-3} \Omega \quad=15 \mathrm{j} \Omega$
Equivalent impedance

$$
\begin{aligned}
& Z=\left(Z_{1} \| Z_{2}\right)+Z_{3}=\frac{Z_{1} Z_{2}}{Z_{1}+Z_{2}}+Z_{3}=\frac{80 \times-50 j}{80-50 j}+15 j \\
& \mathrm{Z}=22.4719-20.9551 \mathrm{j}=30.726 \angle-43^{0}
\end{aligned}
$$

i. $\quad Y=\frac{1}{Z}=\frac{1}{30.726 \angle-43^{0}}=0.0325 \angle 43^{0}=0.0238+0.0222 \mathrm{j}$

Ans
ii. $\quad I=\frac{V}{Z}=\frac{230 \angle 0^{0}}{30.726 \angle-43^{0}}=7.4854 \angle-43^{0}=4.1552+6.2262 j$

Ans
iii. $\quad I_{1}=\frac{Z_{2}}{Z_{1}+Z_{2}} I \quad$ By current division rule
$=\frac{-50 j}{80-50 j} \times 7.4854 \angle-43^{0}=3.9655-0.1186 \mathrm{j}=3.963 \angle-1.7131^{0} \quad$ Ans
$I_{1}=\frac{Z_{1}}{Z_{1}+Z_{2}} I \quad$ By current division rule
OR
$\mathrm{I}_{2}=\mathrm{I}-\mathrm{I}_{1}=(4.1552+6.2262 j)-(3.9655-0.1186 \mathrm{j})=0.1897+6.3448 \mathrm{j} \quad$ Ans

