DEHRADUN INSTITUTE OF TECHNOLOGY

Modern Control System
State Space Analysis

1. A system is described by the following transfer function $G(s)=\frac{20(10 s+1)}{s^{3}+3 s^{2}+2 s+1}$.Find the state and output equation of the system
2. Write the state equation for the circuit shown in figure 1. Take $\mathrm{V}_{1} \& \mathrm{~V}_{2}$ as two inputs.


Figure 1
3. Construct the state model of a system characterized by the differential equation

$$
\frac{d^{3} y}{d t^{3}}+6 \frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}+6 y=u
$$

4. The system equations are given by

$$
\begin{gathered}
\dot{x}(t)=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(t)
\end{gathered}
$$

Find the transfer function of the system.
5. Find out model matrix and diagonal matrix for the systems whose system matrix are given below:
a. $\quad A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 3 & 0 & 2 \\ -12 & -7 & -6\end{array}\right]$
b. $\quad A=\left[\begin{array}{ccc}4 & 1 & -2 \\ 1 & 0 & 2 \\ 1 & -1 & 3\end{array}\right]$
6. Compute STM for $A=\left[\begin{array}{cc}-1 & 1 \\ 0 & 2\end{array}\right]$ by series summation method as well as by Laplace transformation method.
7. Find the time response of the system described by the equation

$$
\begin{array}{r}
\dot{x}(t)=\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \\
x(0)=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], \quad u(t)=1, t>0
\end{array}
$$

8. Test for controllability and observability for the following systems
a. $\quad \dot{x}(t)=\left[\begin{array}{cc}-0.5 & 0 \\ 0 & -2\end{array}\right] x(t)+\left[\begin{array}{l}0 \\ 1\end{array}\right] u(t)$ and $y(t)=\left[\begin{array}{ll}0 & 1\end{array}\right] x(t)$
b. $\quad \dot{x}(t)=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3\end{array}\right] x(t)+\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] u(t)$ and $y(t)=\left[\begin{array}{ccc}1 & 0 & 2\end{array}\right] x(t)$

#  <br> ELECTRICML ENGINEERING 

## Modern Control System

State Space Analysis

## Answers

1. $\dot{x}(t)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3\end{array}\right] x(t)+\left[\begin{array}{c}0 \\ 0 \\ 20\end{array}\right] u(t) \quad y(t)=\left[\begin{array}{lll}1 & 10 & 0\end{array}\right] x(t)$
2. $\left[\begin{array}{l}l_{L 1}(t) \\ l_{L 2}(t) \\ \dot{V}_{C}(t)\end{array}\right]=\left[\begin{array}{ccc}-1 / 2 & 0 & 1 / 2 \\ 0 & -2 & 1 \\ -1 / 2 & -1 / 2 & 0\end{array}\right]\left[\begin{array}{l}i_{L 1}(t) \\ i_{L 2}(t) \\ V_{C}(t)\end{array}\right]+\left[\begin{array}{cc}-/ 12 & 0 \\ 0 & -1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}V_{1} \\ V_{2}\end{array}\right]$
3. $\dot{x}(t)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6\end{array}\right] x(t)+\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] u(t) \quad y(t)=\left[\begin{array}{ccc}1 & 0 & 0\end{array}\right] x(t)$
4. $G(s)=\frac{1}{s^{2}+3 s+2}$
5. a. $M=\left[\begin{array}{ccc}1 & 2 & 1 \\ -1 & -4 & -3 \\ -1 & 1 & 3\end{array}\right] \& \wedge=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3\end{array}\right]$
b. $M=\left[\begin{array}{lll}0 & 2 & 3 \\ 8 & 2 & 1 \\ 4 & 2 & 1\end{array}\right] \& \wedge=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3\end{array}\right]$
6. $\left[\begin{array}{cc}e^{-t} & e^{-t}-e^{-2 t} \\ 0 & e^{-2 t}\end{array}\right]$
7. $\frac{1}{2}-2 e^{-t}+\frac{1}{2} 2^{-2 t}$
8. a. Uncontrollable \& Unobservable
b. Uncontrollable \& Unobservable
