Q1. Determine all the tree and corresponding co-trees for the graph of the network. Then, consider the tree formed By branches (1,2,5) using this tree write $A, B_{f} \& Q_{f}$. Fig. 1

Fig. 1

Q2. Draw the oriented graph of the following matrixes.

													Links	
									0	0	0	-1	0	0
[-1	0	-1	1	0	0	17			1	0	0	+1	0	1
$A=0$	-1	0	-1	${ }^{0}$	-1	0 0	$Q_{f}=$		0	1	0	0	1	1
1	1	0							0 0	1 0	0	0 0	1 1	1 0

Q3. Draw the graph and find a tree for the network. Consider "O" as a datum node and assuming elements BD and BC as links ($\mathrm{Rp} \&$ Capacitor), determine the tie-set schedule, branch impedance matrix and source voltage matrix. Obtain the loop equations using the above said matrices. Fig. 3

Fig. 3

Fig. 4

Q4. Using loop method of analysis, determine currents in all the branches, indicating their directions.
Fig. 4 (Ans:-3 A, -1 A, -4 A)

Q5. Construct a tree in which 10 Ohm and 20 Ohm are tree branches. Using nodal analysis, solve for $V_{1} \& V_{2}$. Fig. 5
(Hint: Assume a resistance parallel with 2 A And a resistance in series with 20 V source Ans: - $\mathrm{V}_{1}=19.02 \mathrm{~V}, \mathrm{~V}_{2}=21.46 \mathrm{~V}$)

Q6. Write the node equation for the following network. Fig. 6

Q7. Draw the dual of the following networks. Fig.7(a \& b)

Fig.7.b

Fig.7.a
Q8. In the circuit shown in figure 8 , switch is closed at $\mathrm{t}=0$. Find $i_{1}, i_{2}, \frac{d i_{1}}{d t} \& \frac{d i_{2}}{d t}$ at $\mathrm{t}=0^{+}$.
Q9. In the circuit shown in figure 9 , the switch K is changed from position 1 to position 2 at time $\mathrm{t}=0$.
Steady sate condition having reached before switching. Find out $i_{1}, \frac{d i_{1}}{d t} \& \frac{d i_{1}^{2}}{d t}$.

Assignment:-2, Unit-2: Graph Theory, Circuit Analysis by Classical Method

Q10. Figure 10 represents a parallel RLC circuit where $\mathrm{R}=0.1 \mathrm{Ohm}, \mathrm{L}=0.5 \mathrm{H}$ and $\mathrm{C}=1$ Micro Farad. Capacitor has an initial voltage of 10 V , polarity as shown in figure. The switch K is closed at time $\mathrm{t}=0$. Obtain v(t).

Figure 8

Figure 9

Figure 10

