EXPEREMENT-4

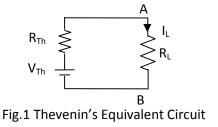
AIM: To verify the Maximum Power Transfer Theorem with dc source using MULTISIM software.

SOFTWARE REQUIRED: MULTISIM software.

THEORY:

Maximum Power transfer theorem:

 $R_L = R_{Th}$


For DC Netwrok:

"Maximum power is transferred by a circuit to a load resistance (R_L) when R_L is equal to Thevenin's equivalent resistance (R_{Th}) of the network."

So for maximum power

And maximum power will be

$$P_{\max} = \frac{V_{Th}^2}{4R_I}$$

For AC Network:

"Maximum power is transferred by a circuit to load impedance (Z_L) when Z_L is equal to complex conjugate of Thevenin's equivalent impedance (Z_{Th}) of the network."

So for maximum power

$$Z_L = \overline{Z_{Th}}$$

And maximum power will be

$$P_{\max} = \frac{V_{Th}^2}{4R_L}$$

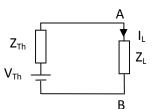


Fig.2 Thevenin's Equivalent Circuit

Circuits:

For DC source: Find out condition for maximum power transfer in the following circuit . Assume any value for R_L , R_{Th} , but V_{Th} = your class roll no Volts.

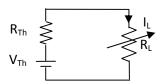


Fig.3: Circuit for Simulation

SOFTWARE CIRCUITS:

OBSERVATION:

S. No	$\mathbf{R}_{\mathrm{Th}}($)	$\mathbf{R}_{\mathbf{L}}($)	Wattmeter Reading (Watt)
1.			
2.			
3.			
•			
•			

CALCULATIONS:

Maximum power

$$P_{\max} = \frac{V_{Th}^2}{4R_t} = \dots \quad Watt$$

Draw the graph between Power and load resistance R_L .

Prepared by: Nafees Ahmed,

RESULT: In the above circuit and simulation it is clear that maximum power will transfer to load resistance when

$$R_L = R_{Th}$$

And maximum power will be

$$P_{\max} = \frac{V_{Th}^2}{4R_L}$$

PRECAUTION:

- 1. Ground the circuit before simulation.
- 2. Design circuit carefully.
- 3. Use variable resistance carefully.
- 4. Save the file properly
- 5. Don't change the setting the software and computer.