Three Phase System

Generation of three phase system: Consider following 3 phase simple loop generator shown in figure 1a. Its generated voltage will be as shown in figure 1 b .

Fig.1a
$e_{a 1 a 2}=E_{m} \operatorname{Sin}(\omega t)$
$e_{c l c 2}=E_{m} \operatorname{Sin}\left(\omega t-120^{0}\right)$
$e_{b 1 b 2}=E_{m} \operatorname{Sin}\left(\omega t-240^{0}\right)$
$\mathrm{E}_{\mathrm{a} 1 \mathrm{a} 2}, \mathrm{E}_{\mathrm{b} 1 \mathrm{~b} 2}$ \& $\mathrm{E}_{\mathrm{clc} 2}$ are RMS values.
values.

Fig.1b: 3-Phase wave from

Fig.1c: Phasor Diagram

Double Subscript notation:

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{AB}}=+\mathrm{V}_{\mathrm{BA}} \\
& \mathrm{I}_{\mathrm{BA}}=-\mathrm{I}_{\mathrm{AB}} \\
& \mathrm{~V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}
\end{aligned}
$$

Fig. 2

Phase Sequence: It is the sequence in which current or voltages in different phases attain their maximum values.

Phase sequence may be R-Y-B or R-B-Y as shown bellow

Fig.2a: Phase Sequence R-Y-B

Fig.2b: Phase Sequence R-B-Y

Interconnection of 3-phase system: The six terminals of three phase winding can be connected to form any of the below.

1. Star or WYE (Y) connected 3- ϕ System
2. Mesh or $\operatorname{Delta}(\Delta)$ connected 3- ϕ System

Star or WYE (Y) connected 3- ϕ System:

Fig.3a
$\mathrm{E}_{\mathrm{R}}, \mathrm{E}_{Y} \& \mathrm{E}_{\mathrm{B}}$ are called phase voltages.
$\mathrm{I}_{\mathrm{R}}, \mathrm{I}_{\mathrm{Y}} \& \mathrm{I}_{\mathrm{B}}$ are called phase currents.
$E_{R Y}, E_{Y B} \& E_{B R}$ are called line voltages.
From figure it is clear that

$$
\mathrm{I}_{\mathrm{R}}+\mathrm{I}_{\mathrm{Y}}+\mathrm{I}_{\mathrm{B}}=0
$$

Line current (I_{L}) = Phase Current (I_{P})

Fig.3b:
Line voltage from above phasor diagram

$$
E_{R Y}=E_{R}-E_{Y}=E_{R}+\left(-E_{Y}\right)
$$

Its magnitude

$$
E_{R Y}=\sqrt{E_{R}^{2}+E_{Y}^{2}+2 E_{R} E_{Y} \cos 60^{0}}
$$

For balanced 3-phase system

$$
\left.\mathrm{E}_{\mathrm{R}}=\mathrm{E}_{Y}=\mathrm{E}_{\mathrm{B}}=\mathrm{E}_{P} \quad \text { (Phase Voltage }\right)
$$

So $\quad E_{R Y}=\sqrt{E_{P}{ }^{2}+E_{P}{ }^{2}+2 E_{P} E_{P} \cos 60^{0}}=\sqrt{E_{P}{ }^{2}+E_{P}{ }^{2}+2 E_{P}{ }^{2} \times \frac{1}{2}}$

$$
E_{R Y}=\sqrt{3} E_{P}
$$

Similarly

$$
\begin{aligned}
& E_{Y B}=E_{Y}+\left(-E_{B}\right)=\sqrt{E_{Y}^{2}+E_{B}^{2}+2 E_{Y} E_{B} \cos 60^{0}}=\sqrt{3} E_{P} \\
& E_{B R}=E_{B}+\left(-E_{R}\right)=\sqrt{E_{B}^{2}+E_{R}^{2}+2 E_{B} E_{R} \cos 60^{\circ}}=\sqrt{3} E_{P}
\end{aligned}
$$

Hence for balanced system

$$
E_{R Y}=E_{Y B}=E_{B R}=\sqrt{ } 3 E_{P}=E_{L}
$$

If ϕ is the angle between phase voltage and phase current then

$$
\begin{aligned}
& \text { Active power of } 3 \text { phase }=3 \mathrm{E}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \operatorname{Cos} \phi=3 \frac{E_{L}}{\sqrt{3}} I_{L} \operatorname{Cos} \phi=\sqrt{3} \mathrm{E}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos} \phi \quad \mathrm{~W} \\
& \text { Reactive power of } 3 \text { phase }=3 \mathrm{E}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \operatorname{Sin} \phi=3 \frac{E_{L}}{\sqrt{3}} I_{L} \operatorname{Sin} \phi=\sqrt{3} \mathrm{E}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Sin} \phi \quad \mathrm{VAR} \\
& \text { Apparent power of } 3 \text { phase }=3 \mathrm{EP}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \quad=3 \frac{E_{L}}{\sqrt{3}} I_{L} \quad=\sqrt{3} \mathrm{E}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}
\end{aligned} \quad \text { VA } \quad l
$$

Mesh or Delta (Δ) connected 3- ϕ System

$\mathrm{E}_{\mathrm{RY}}, \mathrm{E}_{Y \mathrm{~B}} \& \mathrm{E}_{\mathrm{BR}}$ are called phase voltages.
I_{RY}, IYB \& I_{BR} are called phase currents.
From figure it is clear that

$$
E_{R Y}+E_{B R}+E_{B Y}=0
$$

Line Voltage $\left(\mathrm{E}_{\mathrm{L}}\right)=$ Phase Voltage $\left(\mathrm{E}_{\mathrm{P}}\right)$

Fig.4b

Apply KCL at node R

$$
I_{R}=I_{B R}-I_{R Y}=I_{B R}+\left(-I_{R Y}\right)
$$

Its magnitude from above phasor diagram

$$
I_{R}=\sqrt{{I_{B R}}^{2}+{I_{R Y}}^{2}+2 I_{B R} I_{R Y} \cos 60^{0}}
$$

For balanced 3-phase system

$$
\left.\mathrm{I}_{\mathrm{RY}}=\mathrm{I}_{\mathrm{YB}}=\mathrm{I}_{\mathrm{BR}}=\mathrm{I}_{\mathrm{P}} \quad \text { (Phase Current }\right)
$$

So $\quad I_{R}=\sqrt{I_{P}{ }^{2}+I_{P}{ }^{2}+2 I_{P} I_{P} \cos 60^{0}}=\sqrt{I_{P}{ }^{2}+I_{P}{ }^{2}+2 I_{P}{ }^{2} \times \frac{1}{2}}$

$$
I_{R}=\sqrt{3} I_{P}
$$

Similarly

$$
\begin{aligned}
& I_{Y}=I_{R Y}+\left(-I_{Y B}\right)=\sqrt{I_{p}{ }^{2}+I_{P}{ }^{2}+2 I_{p} I_{P} \cos 60^{0}}=\sqrt{3} I_{P} \\
& I_{Y}=I_{Y B}+\left(-I_{B R}\right)=\sqrt{I_{p}{ }^{2}+I_{P}{ }^{2}+2 I_{p} I_{P} \cos 60^{0}}=\sqrt{3} I_{P}
\end{aligned}
$$

Hence for balanced system

$$
\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{Y}}=\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{L}}=\sqrt{ } 3 \mathrm{I}_{\mathrm{P}}
$$

If ϕ is the angle between phase voltage and phase current then
Active power of 3 phase $=3 E_{P I P} \operatorname{Cos} \phi=3 \quad E_{L} \frac{I_{L}}{\sqrt{3}} \operatorname{Cos} \phi=\sqrt{3} \mathrm{E}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos} \phi \quad \mathrm{W}$
Reactive power of 3 phase $=3 E_{P} I_{P} \operatorname{Sin} \phi=3 \quad E_{L} \frac{I_{L}}{\sqrt{3}} \operatorname{Sin} \phi=\sqrt{3} E_{L} I_{L} \operatorname{Sin} \phi \quad$ VAR
Apparent power of 3 phase $=3 \mathrm{E}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \quad=3 E_{L} \frac{I_{L}}{\sqrt{3}} \quad=\sqrt{3} \mathrm{E}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \quad \mathrm{VA}$
Example 1: If the phase voltage of a three phase star connected alternator is E_{P}. What will be the line voltage?
i. When the phases are correctly connected?
ii. When the connection to one phase is reversed?

Solution:

i. \quad Line voltage $\left(\mathrm{E}_{\mathrm{L}}\right)=$ Phase Voltage $\left(\mathrm{E}_{\mathrm{P}}\right)$
ii. Let connation of phase R is reversed

Fig.5a: Phasor Diagram when phases are correctly connected

Fig.5b: Phasor Diagram when connection of phase R is reversed

Line voltage from above phasor diagram

$$
E_{R Y}=E_{R}-E_{Y}=E_{R}+\left(-E_{Y}\right)
$$

Its magnitude

$$
\begin{aligned}
& E_{R Y}=\sqrt{E_{R}^{2}+E_{Y}^{2}+2 E_{R} E_{Y} \cos 120^{0}} \\
& E_{R Y}=\sqrt{E_{P}^{2}+E_{P}^{2}+2 E_{P} E_{P} \cos 120^{0}}=\sqrt{E_{P}^{2}+E_{P}^{2}+2 E_{P}^{2} \times-\frac{1}{2}} \\
& E_{R Y}=E_{P}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& E_{Y B}=E_{Y}+\left(-E_{B}\right)=\sqrt{E_{Y}^{2}+E_{B}^{2}+2 E_{Y} E_{B} \cos 60^{0}}=\sqrt{3} E_{P} \\
& E_{B R}=E_{B}+\left(-E_{R}\right)=\sqrt{E_{B}^{2}+E_{R}^{2}+2 E_{B} E_{R} \cos 120^{0}}=E_{P}
\end{aligned}
$$

Example 2: Three identical of 20 ohm are connected in star to a $415 \mathrm{~V}, 3-\mathrm{phase}, 50 \mathrm{~Hz}$ supply. Calculate
i. Total power taken by load
ii. Power consumed in the resistance if they are connected in delta to same supply.
iii. If one of the resistance is open circuited in each case calculated the power consumed.

Solution:

i. Power in star

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{L}}=415 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{L}}=\sqrt{ } 3 \mathrm{~V}_{\mathrm{P}}=415 \mathrm{~V} \Rightarrow \mathrm{~V}_{\mathrm{P}}=415 / \sqrt{ } 3 \text { Volts } \\
& \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{P}}=\mathrm{V}_{\mathrm{P}} / \mathrm{R}_{\mathrm{P}}=415 / 20 \sqrt{ } 3 \quad \mathrm{Amp} \\
& \text { Total power consumed } \quad \text { (Resistive load } \Rightarrow \mathrm{PF}=1 \text {) } \\
& \mathrm{P}=3 \mathrm{~V}_{\mathrm{P}} \mathrm{IP}_{\mathrm{P}} \operatorname{Cos} \phi=3 *(415 / \sqrt{ } 3) *(415 / 20 \sqrt{ } 3)^{*} 1=8611.25 \text { Watts }
\end{aligned}
$$

ii. Power in Delta

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{L}}=415 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{P}}=415 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{P}}=\mathrm{V}_{\mathrm{P}} / \mathrm{R}_{\mathrm{P}}=415 / 20 \quad \text { Amp } \\
& \text { Total power consumed } \\
& \mathrm{P}=3 \mathrm{~V}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \operatorname{Cos} \phi=3 *(415) *(415 / 20) * 1=25833.75 \mathrm{Watts}
\end{aligned}
$$

iii. Power when one resistance is open circuit
Star Connected \quad Delta Connected

Measurement of power in 3-phase load: There are three methods

1. One wattmeter method
2. Two wattmeter method
3. Three wattmeter method
4. One wattmeter method :

It is used only for balanced load
Total power consumed by 3- ϕ load
$\mathrm{P}=3 \mathrm{x}$ Power consumed by one phase load
$=3 x$ Reading of one wattmeter (W)

Fig.7a: 3- ϕ Star Connected Balanced Load

Note: if load is delta connected, voltage terminal (V) of PC will be connected to ground.
2. Three wattmeter method:

For balanced or unbalanced load total power

$$
\mathrm{P}=\mathrm{W}_{1}+\mathrm{W}_{2}+\mathrm{W}_{3}
$$

Fig.7b
Note: If load is delta connected, voltage terminal (V) of PC of all wattmeters will be connected to ground.

3. Two Wattmeter method:

a. When load is star connected:

Instantaneous power given by wattmeter 1

$$
\mathrm{p}_{1}=\mathrm{i}_{1} \cdot\left(\mathrm{v}_{1}-\mathrm{v}_{3}\right) \quad---(1)
$$

Instantaneous power given by wattmeter 2

$$
\mathrm{p}_{2}=\mathrm{i}_{2} .\left(\mathrm{v}_{2}-\mathrm{v}_{3}\right) \quad---(2)
$$

Adding (1) \& (2)
$\mathrm{p} 1+\mathrm{p} 2=\mathrm{i}_{1} \cdot\left(\mathrm{v}_{1}-\mathrm{v}_{3}\right)+\mathrm{i}_{2} \cdot\left(\mathrm{v}_{2}-\mathrm{v}_{3}\right)$
$=v_{1} i_{1}-v_{3} i_{1}+v_{2} i_{2}-v_{3} i_{2}$
$=v_{1} i_{1}+v_{2} i_{2}-v_{3}\left(i_{1}+i_{2}\right)$
$=\mathrm{v}_{1} \mathrm{i}_{1}+\mathrm{v}_{2} \mathrm{i}_{2}+\mathrm{v}_{3} \mathrm{i}_{3} \quad\left(\because i_{1}+i_{2}+i_{3}=0 \Rightarrow i_{1}+i_{2}=-i_{3}\right)$
$=$ Total instantaneous power in 3-phase load
b. When load is delta connected:

Fig. 7 d
Instantaneous power given by wattmeter 1

$$
\mathrm{p}_{1}=-\mathrm{v}_{3} .\left(\mathrm{i}_{1}-\mathrm{i}_{3}\right) \quad---(1)
$$

Instantaneous power given by wattmeter 2

$$
\mathrm{p}_{2}=\mathrm{v}_{2} \cdot\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right) \quad---(2)
$$

Adding (1) \& (2)
$\mathrm{p} 1+\mathrm{p} 2=-\mathrm{v}_{3} .\left(\mathrm{i}_{1}-\mathrm{i}_{3}\right)+\mathrm{v}_{2} .\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)$
$=-v_{3} i_{1}-v_{3} i_{3}+v_{2} i_{2}-v_{2} i_{1}$
$=-\left(v_{2}+v_{3}\right) i_{1}+v_{2} i_{2}+v_{3} i_{3}$
$=v_{1} \mathrm{i}_{1}+\mathrm{v}_{2} \mathrm{i}_{2}+\mathrm{v}_{3} \mathrm{i}_{3} \quad\left(\because v_{1}+v_{2}+v_{3}=0 \Rightarrow v_{2}+v_{3}=-v 1\right)$
$=$ Total instantaneous power in 3-phase load
Hence a load may be balanced or unbalanced, star connected or delta connected, total instantaneous power of 3- ϕ load will be the sum of the instantaneous power given by the two wattmeters.
Since wattmeter measures active power so total active power of 3- ϕ load will be
$\mathrm{P}=\mathrm{W}_{1}+\mathrm{W}_{2}$
$\mathrm{W}_{1}=$ Active power measured by wattmeter 1
$\mathrm{W}_{2}=$ Active power measured by wattmeter 2
Determination of power factor: Consider a star connected balanced load
Let

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}_{\mathrm{p}} \\
& \mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}=\mathrm{I}_{\mathrm{p}}
\end{aligned}
$$

Reading of wattmeter 1

Phase voltages (RMS)
Phase currents (RMS)
$\mathrm{W}_{1}=\mathrm{I}_{1} \mathrm{~V}_{13} \operatorname{Cos}(30-\phi)$
$=I_{P} \sqrt{ } 3 V_{P} \operatorname{Cos}(30-\phi)$
$=\sqrt{ } 3 \mathrm{~V}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \operatorname{Cos}(30-\phi)---(1)$

Fig.3b
Reading of wattmeter 2

$$
\begin{align*}
\mathrm{W}_{2} & =\mathrm{I}_{2} \mathrm{~V}_{23} \operatorname{Cos}(30+\phi) \\
& =\mathrm{I}_{\mathrm{P}} \sqrt{ } 3 \mathrm{~V}_{\mathrm{P}} \operatorname{Cos}(30+\phi) \\
& =\sqrt{ } 3 \mathrm{~V}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \operatorname{Cos}(30+\phi) \tag{2}
\end{align*}
$$

$\mathrm{W}_{1}+\mathrm{W}_{2}=3 \mathrm{~V}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \operatorname{Cos} \phi=$ Total active power of 3-фload $\mathrm{W}_{1}-\mathrm{W}_{2}=\sqrt{3} \mathrm{~V}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \operatorname{Sin} \phi$
(4)/(3)

$$
\begin{aligned}
& \frac{W_{1}-W_{2}}{W_{1}+W_{2}}=\frac{\sqrt{3} V_{P} I_{P} \operatorname{Sin} \phi}{3 V_{P} I_{P} \operatorname{Cos} \phi} \\
& \tan \phi=\sqrt{3}\left(\frac{W_{1}-W_{2}}{W_{1}+W_{2}}\right) \Rightarrow \phi=\tan ^{-1} \sqrt{3}\left(\frac{W_{1}-W_{2}}{W_{1}+W_{2}}\right)
\end{aligned}
$$

Power factor

$$
\operatorname{Cos} \phi=\operatorname{Cos} \tan ^{-1} \sqrt{3}\left(\frac{W_{1}-W_{2}}{W_{1}+W_{2}}\right)
$$

Effect of power factor on wattmeter readings:
We know

$$
\begin{align*}
\mathrm{W}_{1} & =\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos}(30-\phi) \\
& =\sqrt{ } 3 \mathrm{~V}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \operatorname{Cos}(30-\phi) \tag{1}\\
\mathrm{W}_{2} & =\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos}(30-\phi) \\
& =\sqrt{ } 3 \mathrm{~V}_{\mathrm{P}} \mathrm{I}_{\mathrm{P}} \operatorname{Cos}(30+\phi) \tag{2}
\end{align*}
$$

$>$ When $\phi=0$ i.e PF $\operatorname{Cos} \phi=1$:

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{l}}=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos}(30)=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}(\sqrt{ } 3 / 2) \\
& \mathrm{W}_{2}=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos}(30)=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}(\sqrt{ } 3 / 2)
\end{aligned}
$$

Both wattmeters will show equal readings
$>$ When $\phi=60^{\circ}$ i.e PF $\operatorname{Cos} \phi=0.5$:

$$
\begin{aligned}
& \mathrm{W}_{1}=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos}(30-60)=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}(\sqrt{ } 3 / 2) \\
& \mathrm{W}_{2}=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos}(30+60)=0
\end{aligned}
$$

One Wattmeter will show zero reading and total power consumed $=\mathrm{W}_{1}$
\Rightarrow When $\phi=90$ i.e PF $\operatorname{Cos} \phi=0$:

$$
\begin{aligned}
& \mathrm{W}_{1}=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos (30-90)=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}(1 / 2) \\
& \mathrm{W}_{2}=\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \operatorname{Cos}(30+90)=-\mathrm{V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}(1 / 2)
\end{aligned}
$$

Hence we can say when power factor angle is greater than 60° one wattmeter will give negative reading. For obtaining the reading of that wattmeter either the connection of current coil(CC) or pressure coil(PC) should be changed and reading will be taken as negative.

Example 3: For a certain load one wattmeter reads 20 KW and other 5 KW after the voltage of this wattmeter has been reversed. Calculate power and power factor of the load.

Solution:

$$
\text { Power } \mathrm{P}=\mathrm{W}_{1}+\mathrm{W}_{2}=20+(-5)=15 \mathrm{KW}
$$

$\operatorname{Cos} \phi=\operatorname{Cos} \tan ^{-1} \sqrt{3}\left(\frac{W_{1}-W_{2}}{W_{1}+W_{2}}\right)=\operatorname{Cos} \tan ^{-1} \sqrt{3}\left(\frac{20-(-5)}{20+(-5)}\right)=\operatorname{Cos} \tan ^{-1} \sqrt{3}\left(\frac{25}{15}\right)=\operatorname{Cos} 70.89^{\circ}=0.327$

Q 1. Draw connection diagram fro measurement of power in 3-phase Y connected load using two wattmeter method. In one such experiment the load supplied was 30 KW at 0.7 power factor lagging. Find the reading of each wattmeter.

Hint:

$$
\begin{aligned}
& \mathrm{W} 1+\mathrm{W} 2=\mathrm{P}=30 \mathrm{KW} \\
& \operatorname{Cos} \phi=\tan ^{-1} \sqrt{3}\left(\frac{W_{1}-W_{2}}{W_{1}+W_{2}}\right)=0.7
\end{aligned}
$$

