Control Area Concept - The analysis's which has been done so far considess a single generator supply ping power to a local area. However in reality several generators are operating in parallel to feed system load.

The LFC loop shown in fig (A) can be considered to represent the whale REMIND ME system, of individual control y parameter and individual ratoon turbine generators have the same response
characteristic.
Coherent Group - It is a group of these machines which move together TUESDAY ie. moving in unison. It is very difficult to analyze which machines form a coherent group.. Therefore generally all the machines in a power plant can be considered as a coherent group. In case of India, for the sake of Aindicity and analysis, all the machines in a state board of electricity of one state are considered as a coherent group.

Each coherent group p anti be represented by a single machine. All the machines in a coherent group suing together is steady state as well as dynamic condition.
$\frac{\text { Proportional Plus Integral Control (PI Control) }}{\text { The speed governing }}$ The speed goveriving system installed on each machure is such that the steady state load frequency characteristic for a givens speed changer setting has considerable droop. The frequency specifications are 20 stringent that it is expected that the steady diane in pregpuency, will be zero. Nous in ardor to reduce frequency deviation resulting due to change is load to zero, a reset action must be provided.

This reset action can be achieved by the
a addition of an integral controller as the andiron the secondary control loop. In the secondary control loaf, the frequency error original, after amplification, is integrated wiv.t. tune and is fid to the abed changer to change the speed set point as

28 now n in hi (b) The ap stem now modifies to a PI control IUNE 2000 $\Delta P_{G}(\Delta) \quad \Delta P_{L}(\delta)$

$-1 \rightarrow$ this is taken because $\triangle f \uparrow \triangle P_{c} \downarrow$ and $\triangle f \downarrow, \triangle P_{c} \uparrow$

Now at summer point A input

$$
\begin{aligned}
& \Delta I A^{(s)}=\Delta P_{C}(s)-\frac{1}{R} \Delta F(s) \\
& \Delta T_{A}(s)=-\frac{K_{1}}{s} \cdot \Delta F(s)-\frac{1}{R} \Delta F(s) \\
& \Delta I_{A}(s)=-\left(\frac{K_{1}}{s}+\frac{1}{R}\right) \Delta F(s) \\
& \Delta P_{G}(s)=\frac{K_{G} K_{T}}{\left(1+\Delta \Delta_{q}\right)\left(1+\Delta \tau_{\tau}\right)} \cdot I_{A}(s) \\
& \text { REMIND ME } \\
& \Delta P_{G}(s)=\frac{-K_{G} K_{T}}{\left(1+\Delta \lambda_{G}\right)\left(1+\Delta \tau_{T}\right)}\left(\frac{K_{1}}{\Delta}+\frac{1}{R}\right) \Delta F F_{1}
\end{aligned}
$$

Now input at summer point B -

$$
\begin{aligned}
& \Delta I_{B}(\Delta)=\Delta P_{G}(s)-\Delta P_{L}(s) \\
& \Delta I_{B}(s)=\frac{-K_{G} K_{T}}{\left(1+\Delta \lambda_{Q}\right)\left(1+\Delta \tau_{T}\right)}\left(\frac{K_{1}}{s}+\frac{1}{R}\right) \Delta F(s)-\Delta P_{L}(s)
\end{aligned}
$$

Now Ge we have

$$
\begin{aligned}
& \Delta f(s)=\frac{K_{p}}{(1+\Delta \tau p)} \times \Delta I_{B}(\Delta) \\
& \overline{\Delta F(\Delta)}=\frac{K_{D}}{\left(1+\Delta \hat{\tau_{D}}\right)} \times\left[\frac{-K_{a} K_{T}}{\left(1+\Delta \hat{\tau}_{a}\right)\left(1+\Delta \hat{\tau}_{T}\right)}\left(\frac{K_{1}}{\Delta}+\frac{1}{R}\right) \Delta+(s)\right. \\
& -\Delta P_{L}(\Delta]^{L} \\
& \Delta \Delta F(s)=\frac{--K G K_{T}}{\left(1+\Delta \lambda_{q}\right)\left(1+\Delta \tau_{t}\right)}\left(\frac{K_{1}}{\Delta}+\frac{1}{R}\right)\left(\frac{K p}{1+\Delta \lambda_{p}}\right) \Delta F(\Delta) \\
& -\frac{K P}{(1+s \hat{\imath} \rho)} \Delta P_{L}(s) \\
& \text { oi } \Delta f(\delta)\left[1+\left(\frac{K a K T}{\left(1+\Delta \tau_{G}\right)\left(1+\Delta \tau_{T}\right)}\right)\left(\frac{K_{1}}{\Delta}+\frac{1}{R}\right)\left(\frac{K p}{\left(1+\Delta C_{p}\right)}\right] \quad d\right. \\
& =-\frac{K p}{\left(1+\Delta \tau_{p}\right)} \Delta P_{L}(s) \\
& Q \Delta F(s)=\frac{K_{p} /\left(1+\Delta \lambda_{D}\right) \quad \text { REMIND NA }}{1+\frac{K_{G} K_{T} K p}{\left(1+\Delta C_{G}\right)\left(1+\Delta \tau_{T}\right)\left(1+\Delta \epsilon_{p}\right)} \times \frac{R K_{1}+s}{R s}}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \sigma^{\prime}(\delta)=\frac{-K p \cdot \Delta R\left(1+\Delta \hat{\tau}_{a}\right)\left(1+\Delta \hat{\tau}_{T}\right)}{\Delta R\left(1+\Delta \hat{\tau}_{G}\right)\left(1+\Delta \hat{\tau}_{T}\right)\left(1+\Delta \hat{\tau}_{p}\right)+K_{G} K_{T} K_{p}\left(\Delta+R K_{l}\right)}
\end{aligned}
$$

For a step change in load i.e. $\triangle P_{L}(s)=\Delta P_{L}$ the steady state error in frequency s is given by

$$
\begin{aligned}
& \Delta f_{s s .}=\frac{L_{s i n} \rightarrow 0}{s . \Delta \mp(\Delta)} \\
& =\operatorname{Linit}_{s \rightarrow 0} 8 \underbrace{s}_{s R\left(1+s \hat{C}_{G}\right)\left(1+\Delta \hat{C}_{T}\right)\left(1+s \hat{c}_{P}\right)+K_{G} K_{T} K_{P}\left(\Delta+R K_{1}\right)} \\
& =\operatorname{Lin}_{\Delta \rightarrow 0} \frac{\Rightarrow R K p\left(1+\Delta \hat{C}_{G}\right)\left(1+\Delta \hat{C}_{T}\right)}{s R\left(1+s \hat{C}_{G}\right)\left(1+\Delta \hat{C}_{T}\right)\left(1+\Delta \hat{C}_{p}\right)+K_{p}\left(s+R K_{i}\right)} \\
& =-\frac{0}{0+k_{p} R K_{1}} \cdot \Delta P_{2} \\
& \Delta_{s s}=0
\end{aligned}
$$

